This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358692 #20 Mar 24 2025 04:12:28 %S A358692 1,3,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %T A358692 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, %U A358692 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1 %N A358692 Gilbreath transform of primes p(2*k) with 2 prefixed; see Comments. %C A358692 Suppose that S = (s(k)), for k >= 1, is a sequence of real numbers. For n >= 1, let g(1,n) = |s(n+1)-s(n)| and g(k,n) = |g(k-1, n+1) - g(k-1,n)| for k >= 2. %C A358692 We call (g(k,n)) the Gilbreath array of S and (g(n,1)) the Gilbreath transform of S, written as G(S). If S is the sequences of primes, then the Gilbreath conjecture holds that G(S) consists exclusively of 1's. It appears that there are many S such that G(S) is eventually periodic. See A358691 for conjectured examples. %H A358692 <a href="/index/Ge#Gilbreath">Index entries for sequences related to Gilbreath conjecture and transform</a> %e A358692 Corner of successive absolute difference array (including initial row of primes p(2*k) with 2 prefixed): %e A358692 2 3 7 13 19 29 37 43 53 61 %e A358692 1 4 6 6 10 8 6 10 8 10 %e A358692 3 2 0 4 2 2 4 2 2 2 %e A358692 1 2 4 2 0 2 2 0 0 0 %e A358692 1 2 2 2 2 0 2 0 0 0 %e A358692 1 0 0 0 2 2 2 0 0 4 %e A358692 1 0 0 2 0 0 2 0 4 2 %p A358692 A358692T := proc(n,k) %p A358692 option remember ; %p A358692 if n = 1 then %p A358692 if k = 1 then %p A358692 2; %p A358692 else %p A358692 ithprime(2*k-2) ; %p A358692 end if; %p A358692 else %p A358692 abs(procname(n-1,k+1)-procname(n-1,k)) ; %p A358692 end if; %p A358692 end proc: %p A358692 A358692 := proc(n) %p A358692 A358692T(n+1,1) ; %p A358692 end proc: %p A358692 seq(A358692(n),n=1..1000) ; # _R. J. Mathar_, Feb 01 2023 %t A358692 z = 230; g[t_] := Abs[Differences[t]] %t A358692 t = Join[{2}, Prime[2 Range[z]]] %t A358692 s[1] = g[t]; s[n_] := g[s[n - 1]]; %t A358692 Table[s[n], {n, 1, z}]; %t A358692 Table[First[s[n]], {n, 1, z}] %Y A358692 Cf. A031215, A031368, A036262, A358691. %K A358692 nonn %O A358692 1,2 %A A358692 _Clark Kimberling_, Nov 27 2022