This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358704 #9 Dec 19 2022 09:45:53 %S A358704 3,9,172,309,327,392,473,483,557,578,633,657,693,699,747,767,819,820, %T A358704 829,909,911,1007,1013,1028,1030,1057,1084,1141,1157,1186,1252,1308, %U A358704 1311,1382,1577,1585,1620,1682,1721,1722,1727,1749,1841,1849,1874,1972,2019,2134 %N A358704 Numbers m such that the sum of the prime divisors and the sum of the nonprime divisors of m^2+1 are both prime. %C A358704 The primes of the sequence are 3, 557, 829, 911, 1013, 1721, ... %C A358704 The corresponding pairs (p, q) = (sum of prime divisors, sum of nonprime divisors) are (7, 11), (43, 83), (163, 36293), ... %C A358704 There is a subsequence {b(n)} = {3, 9, 309, 699, 819, ...} such that q/p < 2 (see the following table). %C A358704 Conjecture: when b(n) tends to infinity, q/p tends to 2. %C A358704 +------+----------+----------+-------------+ %C A358704 | b(n) | p | q | q/p | %C A358704 +------+----------+----------+-------------+ %C A358704 | 3 | 7 | 11 | 1.571428571 | %C A358704 | 9 | 43 | 83 | 1.930232558 | %C A358704 | 309 | 47743 | 95483 | 1.999937164 | %C A358704 | 699 | 244303 | 488603 | 1.999987720 | %C A358704 | 819 | 335383 | 670763 | 1.999991055 | %C A358704 | 909 | 413143 | 826283 | 1.999992739 | %C A358704 | 1311 | 859363 | 1718723 | 1.999996509 | %C A358704 | 1749 | 1529503 | 3059003 | 1.999998039 | %C A358704 | 3201 | 5123203 | 10246403 | 1.999999414 | %C A358704 | 4809 | 11563243 | 23126483 | 1.999999741 | %C A358704 ............................................ %e A358704 3 is in the sequence because the divisors of 3^2 + 1 = 10 are {1, 2, 5, 10} and 1 + 10 = 11 and 2 + 5 = 7 are prime numbers. %t A358704 f[n_]:=Plus@@Select[Divisors[n^2+1], !PrimeQ[#]&]; g[n_]:=Plus@@First/@FactorInteger[n^2+1]; Select[Range[2200], PrimeQ[f[#]&&PrimeQ[g[#]]]&] %o A358704 (PARI) isok(m) = my(f=factor(m^2+1), sp=vecsum(f[, 1])); isprime(sp) && isprime(sigma(f)-sp); \\ _Michel Marcus_, Nov 28 2022 %Y A358704 Cf. A193462, A194039, A194594. %K A358704 nonn %O A358704 1,1 %A A358704 _Michel Lagneau_, Nov 27 2022