This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358714 #24 Mar 10 2023 12:19:45 %S A358714 1,1,8,8,64,8,216,64,216,64,1000,64,1728,216,512,512,4096,216,5832, %T A358714 512,1728,1000,10648,512,8000,1728,5832,1728,21952,512,27000,4096, %U A358714 8000,4096,13824,1728,46656,5832,13824,4096,64000,1728,74088,8000,13824,10648,97336,4096,74088 %N A358714 a(n) = phi(n)^3. %C A358714 Number of solutions to gcd(x*y*z, n) = 1 such that 0 <= x,y,z <= n-1. %C A358714 x*y*z == t (mod n) where t is a unit (invertible element) in Z_n. Since t is a unit, all x,y,z must be units. Here there are A000010(n) possibilities for each x,y,z so there are a total of A000010(n)^3 ways to get t as a unit. %F A358714 a(n) = A000010(n)^3. %F A358714 From _Amiram Eldar_, Jan 06 2023: (Start) %F A358714 Multiplicative with a(p^e) = (p-1)^3*p^(3*e-3). %F A358714 Sum_{k=1..n} a(k) ~ c * n^4, where c = (1/4) * Product_{p prime}(1 - 3/p^2 + 3/p^3 - 1/p^4) = 0.08429696844... . %F A358714 Sum_{k>=1} 1/a(k) = Product_{p prime} (1 + p^3/((p-1)^3*(p^3-1))) = 2.47619474816... (A335818). (End) %e A358714 a(9) = A000010(9)^3 = 216. %t A358714 a[n_] := EulerPhi[n]^3; Array[a, 100] (* _Amiram Eldar_, Jan 06 2023 *) %o A358714 (Magma) [(EulerPhi(n))^3: n in [1..180]]; %o A358714 (PARI) a(n) = eulerphi(n)^3; %Y A358714 Cf. A000010, A127473, A361148, A335818. %K A358714 nonn,easy,mult %O A358714 1,3 %A A358714 _Param Mayurkumar Parekh_ and _Paavan Mayurkumar Parekh_, Nov 28 2022