This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358723 #10 Jan 01 2023 14:46:05 %S A358723 0,1,0,2,1,6,7,26,43,135,276,755,1769,4648,11406,29762,75284,195566, %T A358723 503165,1310705,3402317,8892807,23231037,60906456,159786040,420144405, %U A358723 1105673058,2914252306,7688019511,20304253421,53667498236,141976081288,375858854594,995728192169 %N A358723 Number of n-node rooted trees of edge-height equal to their number of leaves. %C A358723 Edge-height (A109082) is the number of edges in the longest path from root to leaf. %H A358723 Andrew Howroyd, <a href="/A358723/b358723.txt">Table of n, a(n) for n = 1..200</a> %e A358723 The a(1) = 0 through a(7) = 7 trees: %e A358723 . (o) . ((oo)) ((o)(o)) (((ooo))) (((o))(oo)) %e A358723 (o(o)) ((o(oo))) (((o)(oo))) %e A358723 ((oo(o))) ((o)((oo))) %e A358723 (o((oo))) ((o)(o(o))) %e A358723 (o(o(o))) ((o(o)(o))) %e A358723 (oo((o))) (o((o)(o))) %e A358723 (o(o)((o))) %t A358723 art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; %t A358723 Table[Length[Select[art[n],Count[#,{},{-2}]==Depth[#]-2&]],{n,1,10}] %o A358723 (PARI) \\ Needs R(n,f) defined in A358589. %o A358723 seq(n) = {Vec(R(n, (h,p)->polcoef(p,h-1,y)), -n)} \\ _Andrew Howroyd_, Jan 01 2023 %Y A358723 For internals instead of leaves: A011782, ranked by A209638. %Y A358723 For internals instead of edge-height: A185650 aerated, ranked by A358578. %Y A358723 For node-height: A358589 (square trees), ranked by A358577, ordered A358590. %Y A358723 A000081 counts rooted trees, ordered A000108. %Y A358723 A034781 counts rooted trees by nodes and height, ordered A080936. %Y A358723 A055277 counts rooted trees by nodes and leaves, ordered A001263. %Y A358723 A358575 counts rooted trees by nodes and internals, ordered A090181. %Y A358723 Cf. A065097, A109082, A109129, A342507, A358552, A358587, A358591, A358728. %K A358723 nonn %O A358723 1,4 %A A358723 _Gus Wiseman_, Nov 29 2022 %E A358723 Terms a(19) and beyond from _Andrew Howroyd_, Jan 01 2023