This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358725 #7 Dec 01 2022 08:56:02 %S A358725 9,15,18,21,23,25,27,30,33,35,36,39,42,45,46,47,49,50,51,54,55,57,60, %T A358725 61,63,65,66,69,70,72,73,75,77,78,81,83,84,85,87,90,91,92,93,94,95,97, %U A358725 98,99,100,102,103,105,108,110,111,113,114,115,117,119,120,121 %N A358725 Matula-Goebel numbers of rooted trees with a greater number of internal (non-leaf) vertices than edge-height. %C A358725 Edge-height (A109082) is the number of edges in the longest path from root to leaf. %C A358725 The Matula-Goebel number of a rooted tree is the product of primes indexed by the Matula-Goebel numbers of the branches of its root, which gives a bijective correspondence between positive integers and unlabeled rooted trees. %H A358725 Gus Wiseman, <a href="/A358725/a358725.png">The first 64 ordered trees with a greater number of internal vertices than edge-height.</a> %F A358725 A342507(a(n)) > A109082(a(n)). %e A358725 The terms together with their corresponding trees begin: %e A358725 9: ((o)(o)) %e A358725 15: ((o)((o))) %e A358725 18: (o(o)(o)) %e A358725 21: ((o)(oo)) %e A358725 23: (((o)(o))) %e A358725 25: (((o))((o))) %e A358725 27: ((o)(o)(o)) %e A358725 30: (o(o)((o))) %e A358725 33: ((o)(((o)))) %e A358725 35: (((o))(oo)) %e A358725 36: (oo(o)(o)) %e A358725 39: ((o)(o(o))) %e A358725 42: (o(o)(oo)) %e A358725 45: ((o)(o)((o))) %e A358725 46: (o((o)(o))) %e A358725 47: (((o)((o)))) %e A358725 49: ((oo)(oo)) %e A358725 50: (o((o))((o))) %t A358725 MGTree[n_]:=If[n==1,{},MGTree/@Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]]; %t A358725 Select[Range[100],Count[MGTree[#],_[__],{0,Infinity}]>Depth[MGTree[#]]-2&] %Y A358725 Complement of A209638 (the case of equality). %Y A358725 These trees are counted by A316321. %Y A358725 Positions of positive terms in A358724. %Y A358725 The case of equality for node-height is A358576. %Y A358725 A000081 counts rooted trees, ordered A000108. %Y A358725 A034781 counts rooted trees by nodes and height, ordered A080936 %Y A358725 A055277 counts rooted trees by nodes and leaves, ordered A001263. %Y A358725 Differences: A358580, A358724, A358726, A358729. %Y A358725 MG statistics: A061775, A109082, A109129, A196050, A342507, A358552. %Y A358725 MG core: A000040, A000720, A001222, A007097, A056239, A112798. %Y A358725 Cf. A185650, A206487, A358577, A358578, A358581-A358586, A358587, A358592, A358730. %K A358725 nonn %O A358725 1,1 %A A358725 _Gus Wiseman_, Nov 29 2022