This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358728 #8 Jan 01 2023 14:45:41 %S A358728 0,0,0,1,1,5,10,30,76,219,582,1662,4614,13080,36903,105098,298689, %T A358728 852734,2434660,6964349,19931147,57100177,163647811,469290004, %U A358728 1346225668,3863239150,11089085961,31838349956,91430943515,262615909503,754439588007,2167711283560 %N A358728 Number of n-node rooted trees whose node-height is less than their number of leaves. %C A358728 Node-height is the number of nodes in the longest path from root to leaf. %H A358728 Andrew Howroyd, <a href="/A358728/b358728.txt">Table of n, a(n) for n = 1..200</a> %e A358728 The a(1) = 0 through a(7) = 10 trees: %e A358728 . . . (ooo) (oooo) (ooooo) (oooooo) %e A358728 ((oooo)) ((ooooo)) %e A358728 (o(ooo)) (o(oooo)) %e A358728 (oo(oo)) (oo(ooo)) %e A358728 (ooo(o)) (ooo(oo)) %e A358728 (oooo(o)) %e A358728 ((o)(ooo)) %e A358728 ((oo)(oo)) %e A358728 (o(o)(oo)) %e A358728 (oo(o)(o)) %t A358728 art[n_]:=If[n==1,{{}},Join@@Table[Select[Tuples[art/@c],OrderedQ],{c,Join@@Permutations/@IntegerPartitions[n-1]}]]; %t A358728 Table[Length[Select[art[n],Depth[#]-1<Count[#,{},{-2}]&]],{n,1,10}] %o A358728 (PARI) \\ Needs R(n,f) defined in A358589. %o A358728 seq(n) = {Vec(R(n, (h,p)->sum(j=h+1, n-1, polcoef(p,j,y))), -n)} \\ _Andrew Howroyd_, Jan 01 2023 %Y A358728 These trees are ranked by A358727. %Y A358728 For internals instead of node-height we have A358581, ordered A358585. %Y A358728 The case of equality is A358589 (square trees), ranked by A358577. %Y A358728 A000081 counts rooted trees, ordered A000108. %Y A358728 A034781 counts rooted trees by nodes and height, ordered A080936. %Y A358728 A055277 counts rooted trees by nodes and leaves, ordered A001263. %Y A358728 Cf. A109082, A109129, A185650, A358552, A358582-A358586, A358587, A358591. %K A358728 nonn %O A358728 1,6 %A A358728 _Gus Wiseman_, Nov 29 2022 %E A358728 Terms a(19) and beyond from _Andrew Howroyd_, Jan 01 2023