This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358735 #37 Mar 17 2023 10:56:43 %S A358735 1,1,1,1,4,2,1,10,16,6,1,20,70,76,24,1,35,224,496,428,120,1,56,588, %T A358735 2260,3808,2808,720,1,84,1344,8140,23008,32152,21096,5040,1,120,2772, %U A358735 24772,107328,245560,298688,178848,40320 %N A358735 Triangular array read by rows. T(n, k) is the coefficient of x^k in a(n+3) where a(1) = a(2) = a(3) = 1 and a(m+2) = (m*x + 2)*a(m+1) - a(m) for all m in Z. %C A358735 This sequence is essentially A204024 except for extra row, alternating signs and reversed rows. %C A358735 The sequence of polynomials a(m) satisfies a(m)*a(m-2) = a(m-1) * (a(m-1) + x*a(m-2) + a(m-3)) - a(m-2)^2 for all m > 3. %F A358735 If x=1, then a(n) = A058797(n+2) = Sum_{k=0..n} T(n, k). %F A358735 If x=2, then a(n) = A093986(n+2). %F A358735 T(n, n) = n!, T(n, 0) = 1, T(n, 1) = A000292(n). T(n, 2) = 2*A040977(n-2). %e A358735 a(3) = 1, a(4) = 1 + x, a(5) = 1 + 4*x + 2*x^2. %e A358735 Triangular array T(n, k) starts: %e A358735 n\k | 0 1 2 3 4 5 %e A358735 --- + - --- --- --- --- --- %e A358735 0 | 1 %e A358735 1 | 1 1 %e A358735 2 | 1 4 2 %e A358735 3 | 1 10 16 6 %e A358735 4 | 1 20 70 76 24 %e A358735 5 | 1 35 224 496 428 120 %t A358735 T[ n_, k_] := If[ n<0, 0, Module[{a = Table[1, n+3], x}, Do[ a[[m]] = a[[m-1]] *(a[[m-1]] + x*a[[m-2]] + a[[m-3]])/a[[m-2]] - a[[m-2]] //Factor//Expand, {m, 4, n+3}]; Coefficient[ a[[n+3]], x, k]]]; %o A358735 (PARI) {T(n, k) = if( n<0, 0, my(a = vector(n+3, i, 1)); for(m = 4, n+3, a[m] = a[m-1]*(a[m-1] + 'x*a[m-2] + a[m-3])/a[m-2] - a[m-2]); polcoeff( a[n+3], k))}; %Y A358735 Cf. A000292, A040977, A058797, A093986, A204024. %K A358735 nonn,tabl %O A358735 0,5 %A A358735 _Michael Somos_, Mar 15 2023