A358737 a(n) is the greatest prime number dividing A359098(n).
101, 139, 53, 557, 223, 31, 1117, 43, 373, 59, 17, 1123, 281, 5, 563, 23, 47, 1129, 29, 283, 103, 7, 227, 71, 379, 569, 67, 163, 571, 127, 13, 229, 191, 37, 41, 383, 1151, 3, 1153, 577, 11, 17, 89, 193, 61, 43, 83, 1163, 97, 233, 53, 389, 73, 167, 1171, 293
Offset: 1
Examples
For n = 2: - A359098(2) = 1112 = 2^3 * 139, - hence a(2) = 139.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..10000
- Yann Bugeaud, On the digital representation of integers with bounded prime factors, Osaka J. Math. 55 (2018), 315-324; arXiv:1609.07926 [math.NT], 2016.
Programs
-
Mathematica
Map[FactorInteger[#][[-1, 1]] &, Select[Range[1111, 1172], And[Mod[#, 10] != 0, Total@ Most@ DigitCount[#] == 4] &]] (* Michael De Vlieger, Jan 04 2023 *)
-
PARI
{ for (n=1, 1172, if (n%10 && #select(d->d, digits(n))==4, f = factor(n); print1 (f[#f~, 1]", "))) }
-
Python
from itertools import count, islice from sympy import primefactors def A358737_gen(): # generator of terms for a in count(3): a10 = 10**a for ad in range(1,10): for b in range(2,a): b10 = 10**b for bd in range(1,10): for c in range(1,b): c10 = 10**c yield from (max(primefactors(ad*a10+bd*b10+cd*c10+dd)) for cd in range(1,10) for dd in range(1,10)) A358737_list = list(islice(A358737_gen(),30)) # Chai Wah Wu, Jan 04 2023
Comments