This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358744 #11 Dec 09 2022 15:43:27 %S A358744 13,29,137,521,577,691,823,1879,3469,4799,8783,21569,25453,26263, %T A358744 26591,27529,27919,34607,39509,45631,48869,53653,56099,56633,57641, %U A358744 63313,63809,67733,68819,74381,76031,76421,94781,97187,98873,101279,105683,110291,118967,119569,119849,120577,123737,128951 %N A358744 First of three consecutive primes p, q, r such that p + q - r, p^2 + q^2 - r^2 and p^3 + q^3 - r^3 are all prime. %H A358744 Robert Israel, <a href="/A358744/b358744.txt">Table of n, a(n) for n = 1..2500</a> %e A358744 a(3) = 137 is a term because 137, 139, 149 are consecutive primes and %e A358744 137^1 + 139^1 - 149^1 = 127, %e A358744 137^2 + 139^2 - 149^2 = 15889, %e A358744 and 137^3 + 139^3 - 149^3 = 1949023 are all prime. %p A358744 R:= NULL: count:= 0: q:= 2: r:= 3: %p A358744 while count < 100 do %p A358744 p:= q; q:= r; r:=nextprime(r); %p A358744 if isprime(p+q-r) and isprime(p^2+q^2-r^2) and isprime(p^3+q^3-r^3) then count:= count+1; R:= R,p fi; %p A358744 od: %p A358744 R; %t A358744 Select[Partition[Prime[Range[13000]], 3, 1], AllTrue[Table[#[[1]]^k + #[[2]]^k - #[[3]]^k, {k, 1, 3}], PrimeQ] &][[;; , 1]] (* _Amiram Eldar_, Nov 29 2022 *) %o A358744 (Python) %o A358744 from itertools import islice %o A358744 from sympy import isprime, nextprime %o A358744 def agen(): %o A358744 p, q, r = 2, 3, 5 %o A358744 while True: %o A358744 if all(isprime(t) for t in [p+q-r, p**2+q**2-r**2, p**3+q**3-r**3]): %o A358744 yield p %o A358744 p, q, r = q, r, nextprime(r) %o A358744 print(list(islice(agen(), 44))) # _Michael S. Branicky_, Nov 29 2022 %Y A358744 Intersection of A358743, A255581 and A358742. %K A358744 nonn %O A358744 1,1 %A A358744 _J. M. Bergot_ and _Robert Israel_, Nov 29 2022