cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358764 Largest difference between consecutive divisors of A276086(n), where A276086 is the primorial base exp-function.

This page as a plain text file.
%I A358764 #18 Dec 03 2022 20:26:34
%S A358764 0,1,2,3,6,9,4,5,10,15,30,45,20,25,50,75,150,225,100,125,250,375,750,
%T A358764 1125,500,625,1250,1875,3750,5625,6,7,14,21,42,63,28,35,70,105,210,
%U A358764 315,140,175,350,525,1050,1575,700,875,1750,2625,5250,7875,3500,4375,8750,13125,26250,39375,42,49,98,147
%N A358764 Largest difference between consecutive divisors of A276086(n), where A276086 is the primorial base exp-function.
%H A358764 Antti Karttunen, <a href="/A358764/b358764.txt">Table of n, a(n) for n = 0..11550</a>
%H A358764 <a href="/index/Pri#primorialbase">Index entries for sequences related to primorial base</a>
%F A358764 a(n) = A060681(A276086(n)).
%F A358764 a(n) = A276086(n) - A324895(n).
%F A358764 For n >= 1, a(n) = A276086(n) - (A276086(n) / A053669(n)).
%F A358764 When n > 0 and A276084(n) is:
%F A358764   < 2 (i.e., when n is not a multiple of 6),      then a(n) = A276086(n-1),
%F A358764   2 (n is multiple of  6, but not of      30),    then a(n) = 2*A276086(n-5),
%F A358764   3 (multiple of      30, but not of     210),    then a(n) = A276086(n-27),
%F A358764   4 (multiple of     210, but not of    2310),    then a(n) = A276086(n-203),
%F A358764   5 (multiple of    2310, but not of   30030),    then a(n) = 2*A276086(n-2307),
%F A358764   6 (multiple of   30030, but not of  510510),    then a(n) = 8*A276086(n-30029),
%F A358764   7 (multiple of  510510, but not of 9699690),    then a(n) = A276086(n-510505),
%F A358764   8 (multiple of 9699690, but not of A002110(9)), then a(n) = A276086(n-9699479).
%o A358764 (PARI)
%o A358764 A032742(n) = if(1==n,n,n/vecmin(factor(n)[,1]));
%o A358764 A060681(n) = (n-A032742(n));
%o A358764 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); };
%o A358764 A358764(n) = A060681(A276086(n));
%o A358764 (PARI)
%o A358764 A053669(n) = forprime(p=2, , if(n%p, return(p))); \\ From A053669
%o A358764 A358764(n) = if(!n, n, if(n%6, A276086(n-1), my(p=A053669(n)); ((p-1)/p)*A276086(n)));
%Y A358764 Cf. A002110, A053669, A060681, A276084, A276086, A324895.
%Y A358764 Cf. also A353528, A353529.
%K A358764 nonn
%O A358764 0,3
%A A358764 _Antti Karttunen_, Dec 02 2022