A358786 a(1) = 1. For n > 1, a(n) is least novel k != n such that rad(k) = rad(n) and either k | n or n | k, where rad is A007947.
1, 4, 9, 2, 25, 12, 49, 16, 3, 20, 121, 6, 169, 28, 45, 8, 289, 36, 361, 10, 63, 44, 529, 48, 5, 52, 81, 14, 841, 60, 961, 64, 99, 68, 175, 18, 1369, 76, 117, 80, 1681, 84, 1849, 22, 15, 92, 2209, 24, 7, 100, 153, 26, 2809, 108, 275, 112, 171, 116, 3481, 30, 3721
Offset: 1
Keywords
Links
- Michael De Vlieger, Log log scatterplot of a(n) n = 1..2^20.
- Michael De Vlieger, Log log scatterplot of a(n) n = 1..2^10, showing primes in red, composite prime powers (in A246547) in gold, squarefree composites (in A120944) in green, numbers neither squarefree nor prime power (in A126706) in blue, highlighting numbers in A286708 in large light blue. Gold and light blue numbers are in A001694. Maxima are a(p) = p^2, minima are a(p^2) = p.
- Michael De Vlieger, Log log scatterplot of a(n), n = 1..2^16, showing n | a(n) in green, a(n) | n in red.
Programs
-
Mathematica
nn = 61; c[] = False; q[] = 1; f[n_] := f[n] = Times @@ FactorInteger[n][[All, 1]]; a[1] = 1; c[1] = True; Do[Which[PrimePowerQ[n], k = If[OddQ[#2], #1^(#2 + 1), #1^(#2 - 1)] & @@ First@ FactorInteger[n], PrimeQ@ Sqrt[n], k = Sqrt[n], True, k = f[n]; m = q[k]; While[Nand[! c[k m], Or[Divisible[k m, n], Divisible[n, k m]], k m != n, Divisible[k, f[m]]], m++]; While[Nor[c[q[k] k], Divisible[k, f[q[k]]]], q[k]++]; k *= m]; Set[{a[n], c[k]}, {k, True}], {n, 2, nn}]; Array[a, nn]
Comments