A358799 a(0) = 0, and for any n >= 0, a(n+1) is the number of ways to write a(n) = a(i) XOR ... XOR a(j) with 0 <= i <= j <= n (where XOR denotes the bitwise XOR operator).
0, 1, 2, 1, 3, 4, 2, 5, 4, 5, 6, 8, 2, 11, 2, 13, 6, 14, 10, 9, 9, 12, 14, 16, 2, 24, 6, 29, 5, 23, 3, 27, 12, 23, 9, 26, 17, 13, 26, 19, 15, 32, 4, 46, 2, 51, 1, 45, 6, 48, 6, 49, 7, 41, 9, 47, 10, 49, 17, 37, 21, 38, 23, 36, 24, 49, 30, 48, 24, 52, 22, 45
Offset: 0
Examples
The first terms, alongside the corresponding pairs (i,j)'s, are: n a(n) (i,j)'s -- ---- --------------------------------------------------------- 0 0 N/A 1 1 (0,0) 2 2 (0,1), (1,1) 3 1 (2,2) 4 3 (0,1), (1,1), (3,3) 5 4 (0,2), (1,2), (2,3), (4,4) 6 2 (2,5), (5,5) 7 5 (0,3), (1,3), (2,2), (3,4), (6,6) 8 4 (0,5), (1,5), (4,6), (7,7) 9 5 (2,5), (3,6), (4,8), (5,5), (8,8) 10 6 (0,5), (1,5), (3,8), (4,6), (7,7), (9,9) 11 8 (0,8), (1,8), (2,6), (3,5), (3,10), (5,6), (6,9), (10,10) 12 2 (6,11), (11,11)
Links
- Rémy Sigrist, Table of n, a(n) for n = 0..10000
- Rémy Sigrist, C program
- Rémy Sigrist, Scatterplot of the first 250000 terms
Programs
-
C
See Links section.
Comments