This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358817 #9 Dec 04 2022 01:41:25 %S A358817 1,2,5,6,10,13,14,21,22,29,30,33,34,37,38,41,42,44,46,49,57,58,61,65, %T A358817 66,69,70,73,75,77,78,80,82,85,86,93,94,98,101,102,105,106,109,110, %U A358817 113,114,116,118,122,129,130,133,135,137,138,141,142,145,147,154,157 %N A358817 Numbers k such that A046660(k) = A046660(k+1). %C A358817 First differs from its subsequence A007674 at n=18. %C A358817 The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 5, 38, 369, 3655, 36477, 364482, 3644923, 36449447, 364494215, 3644931537, ... . Apparently, the asymptotic density of this sequence exists and equals 0.36449... . %H A358817 Amiram Eldar, <a href="/A358817/b358817.txt">Table of n, a(n) for n = 1..10000</a> %t A358817 seq[kmax_] := Module[{s = {}, e1 = 0, e2}, Do[e2 = PrimeOmega[k] - PrimeNu[k]; If[e1 == e2, AppendTo[s, k - 1]]; e1 = e2, {k, 2, kmax}]; s]; seq[160] %o A358817 (PARI) e(n) = {my(f = factor(n)); bigomega(f) - omega(f)}; %o A358817 lista(nmax) = {my(e1 = e(1), e2); for(n=2, nmax, e2=e(n); if(e1 == e2, print1(n-1,", ")); e1 = e2);} %Y A358817 Cf. A046660. %Y A358817 Subsequences: A007674, A052213, A085651, A358818. %Y A358817 Similar sequences: A002961, A005237, A006049, A045920. %K A358817 nonn %O A358817 1,2 %A A358817 _Amiram Eldar_, Dec 02 2022