This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358823 #13 Dec 31 2022 14:51:33 %S A358823 0,1,1,3,3,7,10,20,29,58,83,150,230,399,605,1037,1545,2547,3879,6241, %T A358823 9437,15085,22622,35493,53438,82943,124157,191267,284997,434634, %U A358823 647437,979293,1452182,2185599,3228435,4826596,7112683,10575699,15530404,22990800,33651222 %N A358823 Number of odd-length twice-partitions of n into partitions with all odd parts. %C A358823 A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n. %C A358823 Also the number of odd-length twice-partitions of n into strict partitions. %H A358823 Andrew Howroyd, <a href="/A358823/b358823.txt">Table of n, a(n) for n = 0..1000</a> %H A358823 Gus Wiseman, <a href="/A063834/a063834.txt">Sequences enumerating triangles of integer partitions</a> %F A358823 G.f.: ((1/Product_{k>=1} (1-A000009(k)*x^k)) - (1/Product_{k>=1} (1+A000009(k)*x^k)))/2. - _Andrew Howroyd_, Dec 31 2022 %e A358823 The a(1) = 1 through a(6) = 10 twice-partitions with all odd parts: %e A358823 (1) (11) (3) (31) (5) (33) %e A358823 (111) (1111) (311) (51) %e A358823 (1)(1)(1) (11)(1)(1) (11111) (3111) %e A358823 (3)(1)(1) (111111) %e A358823 (11)(11)(1) (3)(11)(1) %e A358823 (111)(1)(1) (31)(1)(1) %e A358823 (1)(1)(1)(1)(1) (11)(11)(11) %e A358823 (111)(11)(1) %e A358823 (1111)(1)(1) %e A358823 (11)(1)(1)(1)(1) %e A358823 The a(1) = 1 through a(6) = 10 twice-partitions into strict partitions: %e A358823 (1) (2) (3) (4) (5) (6) %e A358823 (21) (31) (32) (42) %e A358823 (1)(1)(1) (2)(1)(1) (41) (51) %e A358823 (2)(2)(1) (321) %e A358823 (3)(1)(1) (2)(2)(2) %e A358823 (21)(1)(1) (3)(2)(1) %e A358823 (1)(1)(1)(1)(1) (4)(1)(1) %e A358823 (21)(2)(1) %e A358823 (31)(1)(1) %e A358823 (2)(1)(1)(1)(1) %t A358823 twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}]; %t A358823 Table[Length[Select[twiptn[n],OddQ[Length[#]]&&OddQ[Times@@Flatten[#]]&]],{n,0,10}] %o A358823 (PARI) %o A358823 R(u,y) = {1/prod(k=1, #u, 1 - u[k]*y*x^k + O(x*x^#u))} %o A358823 seq(n) = {my(u=Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n)) - 1)); Vec(R(u, 1) - R(u, -1), -(n+1))/2} \\ _Andrew Howroyd_, Dec 31 2022 %Y A358823 This is the odd-length case of A270995. %Y A358823 Requiring odd sums also gives A279374 aerated. %Y A358823 This is the case of A358824 with all odd parts. %Y A358823 A000009 counts partitions into odd parts. %Y A358823 A027193 counts partitions of odd length. %Y A358823 A063834 counts twice-partitions, strict A296122, row-sums of A321449. %Y A358823 A078408 counts odd-length partitions into odd parts. %Y A358823 A300301 aerated counts twice-partitions with odd sums and parts. %Y A358823 A358334 counts twice-partitions into odd-length partitions. %Y A358823 Cf. A000041, A001970, A072233, A271619, A279785, A356932. %K A358823 nonn %O A358823 0,4 %A A358823 _Gus Wiseman_, Dec 03 2022 %E A358823 Terms a(26) and beyond from _Andrew Howroyd_, Dec 31 2022