This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358825 #7 Dec 04 2022 08:33:31 %S A358825 1,1,1,4,4,11,20,35,56,113,207,326,602,985,1777,3124,5115,8523,15011, %T A358825 24519,41571,71096,115650,191940,320651,530167,865781,1442059,2358158, %U A358825 3833007,6325067,10243259,16603455,27151086,43734197,71032191,115091799,184492464 %N A358825 Number of ways to choose a sequence of integer partitions, one of each part of an integer partition of n into odd parts. %F A358825 G.f.: Product_{k odd} 1/(1-A000041(k)*x^k). %e A358825 The a(1) = 1 through a(5) = 11 twice-partitions: %e A358825 (1) (1)(1) (3) (3)(1) (5) %e A358825 (21) (21)(1) (32) %e A358825 (111) (111)(1) (41) %e A358825 (1)(1)(1) (1)(1)(1)(1) (221) %e A358825 (311) %e A358825 (2111) %e A358825 (11111) %e A358825 (3)(1)(1) %e A358825 (21)(1)(1) %e A358825 (111)(1)(1) %e A358825 (1)(1)(1)(1)(1) %t A358825 twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}]; %t A358825 Table[Length[Select[twiptn[n],OddQ[Times@@Total/@#]&]],{n,0,10}] %Y A358825 For odd parts instead of sums we have A270995. %Y A358825 For distinct instead of odd sums we have A271619. %Y A358825 Requiring odd length, odd lengths, and odd parts gives A279374 aerated. %Y A358825 For odd lengths instead of sums we have A358334. %Y A358825 The odd-length case is A358826. %Y A358825 A000009 counts partitions into odd parts. %Y A358825 A027193 counts partitions of odd length. %Y A358825 A063834 counts twice-partitions, strict A296122, row-sums of A321449. %Y A358825 A078408 counts odd-length partitions into odd parts. %Y A358825 A300301 aerated counts twice-partitions with odd sums and parts. %Y A358825 Cf. A000041, A001970, A072233, A279785, A356932, A358824. %K A358825 nonn %O A358825 0,4 %A A358825 _Gus Wiseman_, Dec 03 2022