This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358829 #5 Dec 03 2022 13:53:48 %S A358829 1,0,2,3,9,13,38,56,144,237,524,886,1961,3225,6700,11702,23007,39787, %T A358829 77647,133707,254896,442736,820703,1427446,2630008,4535330,8224819, %U A358829 14250148,25513615,43981753,78252954,134323368,236900355,406174046,709886932,1213934012 %N A358829 Number of twice-partitions of n with no (1)'s. %C A358829 A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n. %F A358829 G.f.: Product_{k>=2} 1/(1-A000041(k)*x^k). %e A358829 The a(2) = 2 through a(5) = 13 twice-partitions: %e A358829 (2) (3) (4) (5) %e A358829 (11) (21) (22) (32) %e A358829 (111) (31) (41) %e A358829 (211) (221) %e A358829 (1111) (311) %e A358829 (2)(2) (2111) %e A358829 (11)(2) (3)(2) %e A358829 (2)(11) (11111) %e A358829 (11)(11) (21)(2) %e A358829 (3)(11) %e A358829 (111)(2) %e A358829 (21)(11) %e A358829 (111)(11) %t A358829 twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}]; %t A358829 Table[Length[Select[twiptn[n],FreeQ[Total/@#,1]&]],{n,0,10}] %Y A358829 The version for multiset partitions of integer partitions is A317911. %Y A358829 Forbidding all singletons gives A358828. %Y A358829 A002865 counts partitions with no 1's. %Y A358829 A063834 counts twice-partitions, strict A296122, row-sums of A321449. %Y A358829 Cf. A000009, A000041, A000219, A001970, A072233, A304966, A358824. %K A358829 nonn %O A358829 0,3 %A A358829 _Gus Wiseman_, Dec 03 2022