This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358830 #11 Dec 31 2022 20:30:13 %S A358830 1,1,2,4,9,15,31,53,105,178,330,555,1024,1693,2991,5014,8651,14242, %T A358830 24477,39864,67078,109499,181311,292764,483775,774414,1260016,2016427, %U A358830 3254327,5162407,8285796,13074804,20812682,32733603,51717463,80904644,127305773,198134675,309677802 %N A358830 Number of twice-partitions of n into partitions with all different lengths. %C A358830 A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n. %e A358830 The a(1) = 1 through a(5) = 15 twice-partitions: %e A358830 (1) (2) (3) (4) (5) %e A358830 (11) (21) (22) (32) %e A358830 (111) (31) (41) %e A358830 (11)(1) (211) (221) %e A358830 (1111) (311) %e A358830 (11)(2) (2111) %e A358830 (2)(11) (11111) %e A358830 (21)(1) (21)(2) %e A358830 (111)(1) (22)(1) %e A358830 (3)(11) %e A358830 (31)(1) %e A358830 (111)(2) %e A358830 (211)(1) %e A358830 (111)(11) %e A358830 (1111)(1) %t A358830 twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}]; %t A358830 Table[Length[Select[twiptn[n],UnsameQ@@Length/@#&]],{n,0,10}] %o A358830 (PARI) %o A358830 seq(n)={ local(Cache=Map()); %o A358830 my(g=Vec(-1+1/prod(k=1, n, 1 - y*x^k + O(x*x^n)))); %o A358830 my(F(m,r,b) = my(key=[m,r,b], z); if(!mapisdefined(Cache,key,&z), %o A358830 z = if(r<=0||m==0, r==0, self()(m-1, r, b) + sum(k=1, m, my(c=polcoef(g[m],k)); if(!bittest(b,k)&&c, c*self()(min(m,r-m), r-m, bitor(b, 1<<k))))); %o A358830 mapput(Cache, key, z)); z); %o A358830 vector(n+1, i, F(i-1, i-1, 0)) %o A358830 } \\ _Andrew Howroyd_, Dec 31 2022 %Y A358830 The version for set partitions is A007837. %Y A358830 For sums instead of lengths we have A271619. %Y A358830 For constant instead of distinct lengths we have A306319. %Y A358830 The case of distinct sums also is A358832. %Y A358830 The version for multiset partitions of integer partitions is A358836. %Y A358830 A063834 counts twice-partitions, strict A296122, row-sums of A321449. %Y A358830 A273873 counts strict trees. %Y A358830 Cf. A000009, A000219, A001970, A141199, A279375, A279785, A279790, A336342, A358334, A358831. %K A358830 nonn %O A358830 0,3 %A A358830 _Gus Wiseman_, Dec 03 2022 %E A358830 Terms a(26) and beyond from _Andrew Howroyd_, Dec 31 2022