This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358831 #9 Dec 31 2022 20:30:09 %S A358831 1,1,3,6,14,26,56,102,205,372,708,1260,2345,4100,7388,12819,22603, %T A358831 38658,67108,113465,193876,324980,547640,909044,1516609,2495023, %U A358831 4118211,6726997,11002924,17836022,28948687,46604803,75074397,120134298,192188760,305709858,486140940 %N A358831 Number of twice-partitions of n into partitions with weakly decreasing lengths. %C A358831 A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n. %H A358831 Andrew Howroyd, <a href="/A358831/b358831.txt">Table of n, a(n) for n = 0..500</a> %e A358831 The a(1) = 1 through a(4) = 14 twice-partitions: %e A358831 (1) (2) (3) (4) %e A358831 (11) (21) (22) %e A358831 (1)(1) (111) (31) %e A358831 (2)(1) (211) %e A358831 (11)(1) (1111) %e A358831 (1)(1)(1) (2)(2) %e A358831 (3)(1) %e A358831 (11)(2) %e A358831 (21)(1) %e A358831 (11)(11) %e A358831 (111)(1) %e A358831 (2)(1)(1) %e A358831 (11)(1)(1) %e A358831 (1)(1)(1)(1) %t A358831 twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}]; %t A358831 Table[Length[Select[twiptn[n],GreaterEqual@@Length/@#&]],{n,0,10}] %o A358831 (PARI) %o A358831 P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))} %o A358831 seq(n) = {my(g=Vec(P(n,y)-1), v=[1]); for(k=1, n, my(p=g[k], u=v); v=vector(k+1); v[1] = 1 + O(x*x^n); for(j=1, k, v[1+j] = (v[j] + if(j<k, u[1+j] - u[j]))/(1 - polcoef(p,j)*x^k))); Vec(v[1+n])} \\ _Andrew Howroyd_, Dec 31 2022 %Y A358831 This is the semi-ordered case of A141199. %Y A358831 For constant instead of weakly decreasing lengths we have A306319. %Y A358831 For distinct instead of weakly decreasing lengths we have A358830. %Y A358831 A063834 counts twice-partitions, strict A296122, row-sums of A321449. %Y A358831 A196545 counts p-trees, enriched A289501. %Y A358831 Cf. A000041, A000219, A001970, A061260, A072233, A271619, A279787, A358836. %K A358831 nonn %O A358831 0,3 %A A358831 _Gus Wiseman_, Dec 03 2022 %E A358831 Terms a(26) and beyond from _Andrew Howroyd_, Dec 31 2022