This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358832 #10 Dec 31 2022 14:51:57 %S A358832 1,1,2,4,7,15,25,49,79,154,248,453,748,1305,2125,3702,5931,9990,16415, %T A358832 26844,43246,70947,113653,182314,292897,464614,739640,1169981,1844511, %U A358832 2888427,4562850,7079798,11064182,17158151,26676385,41075556,63598025,97420873,150043132 %N A358832 Number of twice-partitions of n into partitions of distinct lengths and distinct sums. %C A358832 A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n. %e A358832 The a(1) = 1 through a(5) = 15 twice-partitions: %e A358832 (1) (2) (3) (4) (5) %e A358832 (11) (21) (22) (32) %e A358832 (111) (31) (41) %e A358832 (11)(1) (211) (221) %e A358832 (1111) (311) %e A358832 (21)(1) (2111) %e A358832 (111)(1) (11111) %e A358832 (21)(2) %e A358832 (22)(1) %e A358832 (3)(11) %e A358832 (31)(1) %e A358832 (111)(2) %e A358832 (211)(1) %e A358832 (111)(11) %e A358832 (1111)(1) %t A358832 twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}]; %t A358832 Table[Length[Select[twiptn[n],UnsameQ@@Total/@#&&UnsameQ@@Length/@#&]],{n,0,10}] %o A358832 (PARI) %o A358832 seq(n)={ local(Cache=Map()); %o A358832 my(g=Vec(-1+1/prod(k=1, n, 1 - y*x^k + O(x*x^n)))); %o A358832 my(F(m,r,b) = my(key=[m,r,b], z); if(!mapisdefined(Cache,key,&z), %o A358832 z = if(r<=0||m==0, r==0, self()(m-1, r, b) + sum(k=1, m, my(c=polcoef(g[m],k)); if(!bittest(b,k)&&c, c*self()(min(m-1,r-m), r-m, bitor(b, 1<<k))))); %o A358832 mapput(Cache, key, z)); z); %o A358832 vector(n+1, i, F(i-1, i-1, 0)) %o A358832 } \\ _Andrew Howroyd_, Dec 31 2022 %Y A358832 This is the case of A271619 with distinct lengths. %Y A358832 These multiset partitions are ranked by A326535 /\ A326533. %Y A358832 This is the case of A358830 with distinct sums. %Y A358832 For constant instead of distinct lengths and sums we have A358833. %Y A358832 A063834 counts twice-partitions, strict A296122, row-sums of A321449. %Y A358832 A273873 counts strict trees. %Y A358832 Cf. A000009, A000219, A001970, A141199, A279375, A279785, A279790, A306319, A358334, A358836. %K A358832 nonn %O A358832 0,3 %A A358832 _Gus Wiseman_, Dec 04 2022 %E A358832 Terms a(21) and beyond from _Andrew Howroyd_, Dec 31 2022