This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358833 #10 Dec 31 2022 14:52:23 %S A358833 1,1,3,4,8,8,17,16,32,34,56,57,119,102,179,199,335,298,598,491,960, %T A358833 925,1441,1256,2966,2026,3726,3800,6488,4566,11726,6843,16176,14109, %U A358833 21824,16688,49507,21638,50286,50394,99408,44584,165129,63262,208853,205109,248150 %N A358833 Number of rectangular twice-partitions of n of type (P,R,P). %C A358833 A twice-partition of n is a sequence of integer partitions, one of each part of an integer partition of n, so these are twice-partitions of n into partitions with constant lengths and constant sums. %H A358833 Andrew Howroyd, <a href="/A358833/b358833.txt">Table of n, a(n) for n = 0..1000</a> %H A358833 Gus Wiseman, <a href="/A063834/a063834.txt">Sequences enumerating triangles of integer partitions</a> %F A358833 a(n) = Sum_{d|n} Sum_{j=1..n/d} A008284(n/d, j)^d for n > 0. - _Andrew Howroyd_, Dec 31 2022 %e A358833 The a(1) = 1 through a(5) = 8 twice-partitions: %e A358833 (1) (2) (3) (4) (5) %e A358833 (11) (21) (22) (32) %e A358833 (1)(1) (111) (31) (41) %e A358833 (1)(1)(1) (211) (221) %e A358833 (1111) (311) %e A358833 (2)(2) (2111) %e A358833 (11)(11) (11111) %e A358833 (1)(1)(1)(1) (1)(1)(1)(1)(1) %t A358833 twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}]; %t A358833 Table[Length[Select[twiptn[n],SameQ@@Length/@#&&SameQ@@Total/@#&]],{n,0,10}] %o A358833 (PARI) %o A358833 P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))} %o A358833 seq(n) = {my(u=Vec(P(n,y)-1)); concat([1], vector(n, n, sumdiv(n, d, my(p=u[n/d]); sum(j=1, n/d, polcoef(p, j, y)^d))))} \\ _Andrew Howroyd_, Dec 31 2022 %Y A358833 This is the rectangular case of A279787. %Y A358833 This is the case of A306319 with constant sums. %Y A358833 For distinct instead of constant lengths and sums we have A358832. %Y A358833 The version for multiset partitions of integer partitions is A358835. %Y A358833 A063834 counts twice-partitions, strict A296122, row-sums of A321449. %Y A358833 A281145 counts same-trees. %Y A358833 Cf. A000041, A000219, A001970, A008284, A141199, A327908, A358823, A358831. %K A358833 nonn %O A358833 0,3 %A A358833 _Gus Wiseman_, Dec 04 2022 %E A358833 Terms a(21) and beyond from _Andrew Howroyd_, Dec 31 2022