This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358834 #9 Dec 30 2022 21:38:54 %S A358834 0,1,1,3,3,8,11,24,35,74,109,213,336,624,986,1812,2832,5002,7996, %T A358834 13783,21936,37528,59313,99598,158356,262547,415590,684372,1079576, %U A358834 1759984,2779452,4491596,7069572,11370357,17841534,28509802,44668402,70975399,110907748 %N A358834 Number of odd-length twice-partitions of n into odd-length partitions. %C A358834 A twice-partition of n (A063834) is a sequence of integer partitions, one of each part of an integer partition of n. %H A358834 Andrew Howroyd, <a href="/A358834/b358834.txt">Table of n, a(n) for n = 0..1000</a> %F A358834 G.f.: ((1/Product_{k>=1} (1-A027193(k)*x^k)) - (1/Product_{k>=1} (1+A027193(k)*x^k)))/2. - _Andrew Howroyd_, Dec 30 2022 %e A358834 The a(1) = 1 through a(6) = 11 twice-partitions: %e A358834 (1) (2) (3) (4) (5) (6) %e A358834 (111) (211) (221) (222) %e A358834 (1)(1)(1) (2)(1)(1) (311) (321) %e A358834 (11111) (411) %e A358834 (2)(2)(1) (21111) %e A358834 (3)(1)(1) (2)(2)(2) %e A358834 (111)(1)(1) (3)(2)(1) %e A358834 (1)(1)(1)(1)(1) (4)(1)(1) %e A358834 (111)(2)(1) %e A358834 (211)(1)(1) %e A358834 (2)(1)(1)(1)(1) %t A358834 twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}]; %t A358834 Table[Length[Select[twiptn[n],OddQ[Length[#]]&&OddQ[Times@@Length/@#]&]],{n,0,10}] %o A358834 (PARI) %o A358834 P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))} %o A358834 R(u,y) = {1/prod(k=1, #u, 1 - u[k]*y*x^k + O(x*x^#u))} %o A358834 seq(n) = {my(u=Vec(P(n,1)-P(n,-1))/2); Vec(R(u, 1) - R(u, -1), -(n+1))/2} \\ _Andrew Howroyd_, Dec 30 2022 %Y A358834 The version for set partitions is A003712. %Y A358834 If the parts are also odd we get A279374. %Y A358834 The version for multiset partitions of integer partitions is the odd-length case of A356932, ranked by A026424 /\ A356935. %Y A358834 This is the odd-length case of A358334. %Y A358834 This is the odd-lengths case of A358824. %Y A358834 For odd sums instead of lengths we have A358826. %Y A358834 The case of odd sums also is the bisection of A358827. %Y A358834 A000009 counts partitions into odd parts. %Y A358834 A027193 counts partitions of odd length. %Y A358834 A063834 counts twice-partitions, strict A296122, row-sums of A321449. %Y A358834 A078408 counts odd-length partitions into odd parts. %Y A358834 A300301 aerated counts twice-partitions with odd sums and parts. %Y A358834 Cf. A000041, A001970, A270995, A271619, A279785, A358823, A358837. %K A358834 nonn %O A358834 0,4 %A A358834 _Gus Wiseman_, Dec 04 2022 %E A358834 Terms a(21) and beyond from _Andrew Howroyd_, Dec 30 2022