This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358835 #14 Mar 24 2025 05:29:24 %S A358835 1,1,3,4,8,8,17,16,31,34,54,57,108,102,166,191,294,298,504,491,803, %T A358835 843,1251,1256,2167,1974,3133,3226,4972,4566,8018,6843,11657,11044, %U A358835 17217,15010,28422,21638,38397,35067,58508,44584,91870,63262,125114,106264,177483 %N A358835 Number of multiset partitions of integer partitions of n with constant block sizes and constant block sums. %H A358835 Andrew Howroyd, <a href="/A358835/b358835.txt">Table of n, a(n) for n = 0..1000</a> %F A358835 a(n) = Sum_{d|n} Sum_{j=1..n/d} binomial(d + A008284(n/d, j) - 1, d) for n > 0. - _Andrew Howroyd_, Dec 31 2022 %e A358835 The a(1) = 1 through a(6) = 17 multiset partitions: %e A358835 {1} {2} {3} {4} {5} {6} %e A358835 {11} {12} {13} {14} {15} %e A358835 {1}{1} {111} {22} {23} {24} %e A358835 {1}{1}{1} {112} {113} {33} %e A358835 {1111} {122} {114} %e A358835 {2}{2} {1112} {123} %e A358835 {11}{11} {11111} {222} %e A358835 {1}{1}{1}{1} {1}{1}{1}{1}{1} {1113} %e A358835 {1122} %e A358835 {3}{3} %e A358835 {11112} %e A358835 {111111} %e A358835 {12}{12} %e A358835 {2}{2}{2} %e A358835 {111}{111} %e A358835 {11}{11}{11} %e A358835 {1}{1}{1}{1}{1}{1} %t A358835 Table[If[n==0,1,Length[Union[Sort/@Join@@Table[Select[Tuples[IntegerPartitions[d],n/d],SameQ@@Length/@#&],{d,Divisors[n]}]]]],{n,0,20}] %o A358835 (PARI) %o A358835 P(n,y) = 1/prod(k=1, n, 1 - y*x^k + O(x*x^n)) %o A358835 seq(n) = {my(u=Vec(P(n,y)-1)); concat([1], vector(n, n, sumdiv(n, d, my(p=u[n/d]); sum(j=1, n/d, binomial(d + polcoef(p, j, y) - 1, d)))))} \\ _Andrew Howroyd_, Dec 31 2022 %Y A358835 For just constant sums we have A305551, ranked by A326534. %Y A358835 For just constant lengths we have A319066, ranked by A320324. %Y A358835 The version for set partitions is A327899. %Y A358835 For distinct instead of constant lengths and sums we have A358832. %Y A358835 The version for twice-partitions is A358833. %Y A358835 A001970 counts multiset partitions of integer partitions. %Y A358835 A063834 counts twice-partitions, strict A296122. %Y A358835 Cf. A000219, A007425, A141199, A327908, A356932, A358831. %K A358835 nonn %O A358835 0,3 %A A358835 _Gus Wiseman_, Dec 05 2022 %E A358835 Terms a(41) and beyond from _Andrew Howroyd_, Dec 31 2022