cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358871 Square array A(n, k), n, k >= 0, read by antidiagonals: A(0, 0) = 0, A(0, 1) = A(1, 0) = 1, A(1, 1) = 2, for n, k >= 0, A(2*n, 2*k) = A(n, k), A(2*n, 2*k+1) = A(n, k) + A(n, k+1), A(2*n+1, 2*k) = A(n, k) + A(n+1, k), A(2*n+1, 2*k+1) = A(n+1, k+(1+(-1)^(n+k))/2) + A(n, k+(1-(-1)^(n+k))/2).

This page as a plain text file.
%I A358871 #10 Jan 18 2023 03:29:08
%S A358871 0,1,1,1,2,1,2,3,3,2,1,3,2,3,1,3,4,5,5,4,3,2,4,3,4,3,4,2,3,5,6,5,5,6,
%T A358871 5,3,1,4,3,5,2,5,3,4,1,4,5,7,8,7,7,8,7,5,4,3,5,4,6,5,6,5,6,4,5,3,5,7,
%U A358871 8,7,8,9,9,8,7,8,7,5,2,6,4,7,3,7,4,7,3,7,4,6,2
%N A358871 Square array A(n, k), n, k >= 0, read by antidiagonals: A(0, 0) = 0, A(0, 1) = A(1, 0) = 1, A(1, 1) = 2, for n, k >= 0, A(2*n, 2*k) = A(n, k), A(2*n, 2*k+1) = A(n, k) + A(n, k+1), A(2*n+1, 2*k) = A(n, k) + A(n+1, k), A(2*n+1, 2*k+1) = A(n+1, k+(1+(-1)^(n+k))/2) + A(n, k+(1-(-1)^(n+k))/2).
%C A358871 This sequence is a variant of A357743: we can build this sequence:
%C A358871 - by starting from an isosceles right triangle with values 0, 1, 1:
%C A358871         0  <- right angle
%C A358871        / \
%C A358871       /   \
%C A358871      1-----1
%C A358871 - and repeatedly applying the following substitution to each isosceles right triangle:
%C A358871         t                 t
%C A358871        / \        -->    /|\
%C A358871       /   \             / | \
%C A358871      u-----v           u-u+v-v
%C A358871                           ^
%C A358871                           |  right angles
%C A358871 The sequence presents rich patterns (see Links section).
%H A358871 Rémy Sigrist, <a href="/A358871/a358871.png">Colored representation of the first 512 antidiagonals</a> (where the color is function of A(n, k) mod 2)
%H A358871 Rémy Sigrist, <a href="/A358871/a358871_1.png">Colored representation of the first 512 antidiagonals</a> (where the color is function of A(n, k) mod 3)
%H A358871 Rémy Sigrist, <a href="/A358871/a358871_2.png">Colored representation of the first 512 antidiagonals</a> (where the color is function of A(n, k) mod 5)
%H A358871 Rémy Sigrist, <a href="https://arxiv.org/abs/2301.06039">Nonperiodic tilings related to Stern's diatomic series and based on tiles decorated with elements of Fp</a>, arXiv:2301.06039 [math.CO], 2023.
%F A358871 A(n, k) = A(k, n).
%F A358871 A(n, 0) = A002487(n).
%F A358871 A(n, n) = 2*A002487(n).
%e A358871 Array A(n, k) begins:
%e A358871   n\k |  0  1  2   3  4   5   6   7  8   9  10
%e A358871   ----+---------------------------------------
%e A358871     0 |  0  1  1   2  1   3   2   3  1   4   3
%e A358871     1 |  1  2  3   3  4   4   5   4  5   5   7
%e A358871     2 |  1  3  2   5  3   6   3   7  4   8   4
%e A358871     3 |  2  3  5   4  5   5   8   6  7   7  10
%e A358871     4 |  1  4  3   5  2   7   5   8  3   9   6
%e A358871     5 |  3  4  6   5  7   6   9   7  8   8  11
%e A358871     6 |  2  5  3   8  5   9   4   9  5  10   5
%e A358871     7 |  3  4  7   6  8   7   9   6  7   7  12
%e A358871     8 |  1  5  4   7  3   8   5   7  2   9   7
%e A358871     9 |  4  5  8   7  9   8  10   7  9   8  13
%e A358871    10 |  3  7  4  10  6  11   5  12  7  13   6
%e A358871 .
%e A358871 The first antidiagonals are:
%e A358871              0
%e A358871             1 1
%e A358871            1 2 1
%e A358871           2 3 3 2
%e A358871          1 3 2 3 1
%e A358871         3 4 5 5 4 3
%e A358871        2 4 3 4 3 4 2
%e A358871       3 5 6 5 5 6 5 3
%e A358871      1 4 3 5 2 5 3 4 1
%e A358871     4 5 7 8 7 7 8 7 5 4
%o A358871 (PARI) A(n,k) = { my (nn = n\2, kk=k\2); if (n<=1 && k<=1, n+k, n%2==0 && k%2==0, A(n/2,k/2), n%2==0, A(n/2,k\2)+A(n/2,k\2+1), k%2==0, A(n\2,k\2)+A(n\2+1,k\2), A(n\2+1,k\2+(1+(-1)^(n\2+k\2))/2) + A(n\2, k\2+(1-(-1)^(n\2+k\2))/2)); }
%Y A358871 Cf. A002487, A357743.
%K A358871 nonn,tabl
%O A358871 0,5
%A A358871 _Rémy Sigrist_, Dec 04 2022