A358882
The number of regions in a Farey diagram of order (n,n).
Original entry on oeis.org
4, 56, 504, 2024, 8064, 18200, 50736, 99248, 202688, 343256, 657904, 983008, 1708672, 2485968, 3755184, 5289944, 8069736, 10539792, 15387320, 19913840
Offset: 1
- Alain Daurat, M. Tajine, M. Zouaoui, About the frequencies of some patterns in digital planes. Application to area estimators. Computers & Graphics. 33.1 (2009), 11-20.
- Daniel Khoshnoudirad, Farey lines defining Farey diagrams and application to some discrete structures. Applicable Analysis and Discrete Mathematics. 9 (2015), 73-84.
- Scott R. Shannon, Image for n = 1.
- Scott R. Shannon, Image for n = 2.
- Scott R. Shannon, Image for n = 3.
- Scott R. Shannon, Image for n = 4.
- Scott R. Shannon, Image for n = 5.
- Scott R. Shannon, Image for n = 6.
- Scott R. Shannon, Image for n = 7.
- Scott R. Shannon, Image for n = 8.
- Wikipedia, Farey sequence.
See
A358298 for definition of Farey diagram Farey(m,n).
A358885
Table read by rows: T(n,k) = the number of regions with k sides, k >= 3, in a Farey diagram of order (n,n).
Original entry on oeis.org
4, 48, 8, 400, 104, 1568, 456, 6216, 1848, 13944, 4256, 38760, 11976, 75768, 23480, 154440, 48248, 261072, 82184, 500464, 157440, 747480, 235528, 1298584, 410088, 1890184, 595784, 2853416, 901768, 4015552, 1274392, 6127632, 1942104, 8002552, 2537240, 11683880, 3703440, 15123800, 4790040
Offset: 1
The table begins:
4;
48, 8;
400, 104;
1568, 456;
6216, 1848;
13944, 4256;
38760, 11976;
75768, 23480;
154440, 48248;
261072, 82184;
500464, 157440;
747480, 235528;
1298584, 410088;
1890184, 595784;
2853416, 901768;
4015552, 1274392;
6127632, 1942104;
8002552, 2537240;
11683880, 3703440;
15123800, 4790040;
.
.
See
A358298 for definition of Farey diagram Farey(m,n).
A358887
Number of vertices formed inside a square with edge length 1 by the straight line segments mutually connecting all vertices and points that divide the sides into segments with lengths equal to the Farey series of order n = A006842(n,k)/A006843(n,k), k = 1..A005728(n).
Original entry on oeis.org
5, 37, 705, 4549, 42357, 94525, 531485, 1250681, 3440621, 5985201
Offset: 1
A359690
Number of vertices in a regular drawing of a complete bipartite graph where the vertex positions on each part equal the Farey series of order n.
Original entry on oeis.org
5, 13, 69, 289, 1971, 3997, 20371, 45751, 120957, 205299, 629847, 897801, 2334409, 3461459, 5517131, 8468061
Offset: 1
Cf.
A359691 (crossings),
A359692 (regions),
A359693 (edges),
A359694 (k-gons),
A005728,
A331755,
A359654,
A358887,
A358883,
A006842,
A006843.
A358884
The number of edges in a Farey diagram of order (n,n).
Original entry on oeis.org
8, 92, 816, 3276, 13040, 29452, 82128, 160656, 328212, 556040, 1065660, 1592368, 2768168, 4026972, 6083804, 8572272, 13075848, 17078512, 24932940, 32266036
Offset: 1
See
A358298 for definition of Farey diagram Farey(m,n).
A359654
Number of vertices formed in a square with edge length 1 by straight line segments when connecting the internal edge points that divide the sides into segments with lengths equal to the Farey series of order n to the equivalent points on the opposite side of the square.
Original entry on oeis.org
4, 9, 77, 593, 6749, 15569, 93281, 222933, 623409, 1087393, 3453289, 5011009, 13271517
Offset: 1
A359116
Mark the points of the Farey series F_n on a strip of paper and wrap it around a circle of circumference 1 so the endpoints 0 and 1 coincide; draw a chord between every pair of the Farey points; a(n) is the number of vertices in the resulting graph.
Original entry on oeis.org
1, 2, 5, 19, 208, 480, 3011, 7185, 20169, 35438, 111232, 162062, 422841, 633226, 1024370, 1576122, 3315790, 4240974, 8204951, 10654475, 15310713
Offset: 1
- Tom Duff, The Farey Ring graphs FR(2) to FR(10)
- Tom Duff, The Farey Ring graph FR(16)
- Scott R. Shannon, Image for n = 3.
- Scott R. Shannon, Image for n = 4.
- Scott R. Shannon, Image for n = 5.
- Scott R. Shannon, Image for n = 6.
- Scott R. Shannon, Image for n = 7. The two non-simple vertices mentioned in the comments are the two yellow dots in the lower half of the figure on either side of the y axis.
- Scott R. Shannon, Image for n = 8.
- Scott R. Shannon, Image for n = 9.
- Scott R. Shannon, Image for n = 10.
A359691
Number of crossings in a regular drawing of a complete bipartite graph where the vertex positions on each part equal the Farey series of order n.
Original entry on oeis.org
1, 7, 59, 275, 1949, 3971, 20333, 45705, 120899, 205233, 629761, 897707, 2334291, 3461329, 5516985, 8467899
Offset: 1
Cf.
A359690 (vertices),
A359692 (regions),
A359693 (edges),
A359694 (k-gons),
A005728,
A159065,
A331755,
A359654,
A358887,
A358883,
A006842,
A006843.
Showing 1-8 of 8 results.
Comments