This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358890 #31 Dec 10 2022 23:35:27 %S A358890 14,4,1,8,90,168,9352,46189,2515371,721970,6449639,565062156, %T A358890 11336460025,37151747513,256994754033,14037913234203 %N A358890 a(n) is the first term of the first maximal run of n consecutive numbers with increasing greatest prime factors. %C A358890 a(16) > 10^13. - _Giovanni Resta_, Jul 25 2013 %C A358890 The convention gpf(1) = A006530(1) = 1 is used (otherwise we would have a(2) = 2 and a(3) = 24). - _Pontus von Brömssen_, Dec 05 2022 %C A358890 a(17) > 10^14. - _Martin Ehrenstein_, Dec 10 2022 %F A358890 A079748(a(n)) = n-1. %F A358890 From _Pontus von Brömssen_, Dec 05 2022: (Start) %F A358890 A079748(a(n)-1) = 0 for n != 3. %F A358890 For n != 3, a(n) = A070087(m)+1, where m is the smallest positive integer such that A070087(m+1) - A070087(m) = n. %F A358890 (End) %e A358890 a(7) = 9352 because the first sequence of seven consecutive numbers with increasing greatest prime factors is 9352=167*7*2^3, 9353=199*47, 9354=1559*3*2, 9355=1871*5, 9356=2339*2^2, 9357=3119*3, and 9358=4679*2. [Corrected by _Jon E. Schoenfield_, Sep 21 2022] %p A358890 V:= Vector(11): count:= 0: %p A358890 a:= 1: m:= 1: w:= 1: %p A358890 for k from 2 while count < 11 do %p A358890 v:= max(numtheory:-factorset(k)); %p A358890 if v > m then m:= v %p A358890 else %p A358890 if V[k-a] = 0 then V[k-a]:= a; count:= count+1; fi; %p A358890 a:= k; m:= v; %p A358890 fi %p A358890 od: %p A358890 convert(V,list); # _Robert Israel_, Dec 05 2022 %o A358890 (Python) %o A358890 from sympy import factorint %o A358890 def A358890(n): %o A358890 m = 1 %o A358890 gpf1 = 1 %o A358890 k = 1 %o A358890 while 1: %o A358890 while 1: %o A358890 gpf2 = max(factorint(m+k)) %o A358890 if gpf2 < gpf1: break %o A358890 gpf1 = gpf2 %o A358890 k += 1 %o A358890 if k == n: return m %o A358890 m += k %o A358890 gpf1 = gpf2 %o A358890 k = 1 # _Pontus von Brömssen_, Dec 05 2022 %Y A358890 Cf. A006530, A070087, A079748, A079749 (erroneous version), A100384. %K A358890 nonn,more %O A358890 1,1 %A A358890 _Reinhard Zumkeller_, Jan 10 2003 %E A358890 More terms from _Don Reble_, Jan 17 2003 %E A358890 Corrected by _Jud McCranie_, Feb 11 2003 %E A358890 a(14)-a(15) from _Giovanni Resta_, Jul 25 2013 %E A358890 Name edited, a(1) and a(2) corrected by _Pontus von Brömssen_, Dec 05 2022 %E A358890 a(16) from _Martin Ehrenstein_, Dec 07 2022