cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358897 Numbers k such that p(k)^p(k) < p(k+1)^p(k-1), where p(k) = prime(k).

This page as a plain text file.
%I A358897 #6 Dec 15 2022 14:00:53
%S A358897 46,99,263,295,297,319,344,378,409,429,487,573,602,838,914,937,945,
%T A358897 985,1051,1116,1170,1231,1233,1288,1392,1446,1457,1551,1585,1648,1675,
%U A358897 1708,1710,1831,1879,1908,1983,2032,2064,2154,2176,2250,2310,2327,2344,2524
%N A358897 Numbers k such that p(k)^p(k) < p(k+1)^p(k-1), where p(k) = prime(k).
%e A358897 For k=46, let p = prime(45) = 197, q = prime(46) = 199, and r = prime(47) = 211. Then q^q < r^p, where (r^p) = (2.5815...)*q^q.
%t A358897 p[n_] := Prime[n];
%t A358897 u = Select[1 + Range[3000], p[#]^p[#] < p[# + 1]^p[# - 1] &] (* A358897 *)
%t A358897 Prime[u]  (* A358898 *)
%Y A358897 Cf. A000040, A053089, A358898.
%K A358897 nonn
%O A358897 1,1
%A A358897 _Clark Kimberling_, Dec 06 2022