This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358901 #24 Feb 12 2024 18:26:24 %S A358901 1,1,1,2,2,2,3,4,4,5,5,7,9,8,9,11,11,15,16,16,18,20,22,26,28,31,32,36, %T A358901 40,45,46,46,50,59,64,70,75,78,83,89,94,108,106,104,120,137,142,147, %U A358901 150,161,174,190,200,220,226,224,248,274,274,287,301,320,340,351,361 %N A358901 Number of integer partitions of n whose parts have all different numbers of prime factors (A001222). %H A358901 Alois P. Heinz, <a href="/A358901/b358901.txt">Table of n, a(n) for n = 0..5000</a> (first 101 terms from Lucas A. Brown) %H A358901 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A358901.py">Python program</a>. %e A358901 The a(1) = 1 through a(11) = 7 partitions: %e A358901 (1) (2) (3) (4) (5) (6) (7) (8) (9) (A) (B) %e A358901 (21) (31) (41) (42) (43) (62) (54) (82) (74) %e A358901 (51) (61) (71) (63) (91) (65) %e A358901 (421) (431) (81) (451) (83) %e A358901 (621) (631) (92) %e A358901 (A1) %e A358901 (821) %t A358901 Table[Length[Select[IntegerPartitions[n],UnsameQ@@PrimeOmega/@#&]],{n,0,60}] %Y A358901 The weakly decreasing version is A358909 (complement A358910). %Y A358901 The version not counting multiplicity is A358903, weakly decreasing A358902. %Y A358901 For equal numbers of prime factors we have A319169, compositions A358911. %Y A358901 A001222 counts prime factors, distinct A001221. %Y A358901 A063834 counts twice-partitions. %Y A358901 A358836 counts multiset partitions with all distinct block sizes. %Y A358901 Cf. A056239, A129519, A141199, A218482, A300335, A319071, A320324, A358335, A358831, A358908. %K A358901 nonn %O A358901 0,4 %A A358901 _Gus Wiseman_, Dec 07 2022 %E A358901 a(61) and beyond from _Lucas A. Brown_, Dec 14 2022