cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358901 Number of integer partitions of n whose parts have all different numbers of prime factors (A001222).

This page as a plain text file.
%I A358901 #24 Feb 12 2024 18:26:24
%S A358901 1,1,1,2,2,2,3,4,4,5,5,7,9,8,9,11,11,15,16,16,18,20,22,26,28,31,32,36,
%T A358901 40,45,46,46,50,59,64,70,75,78,83,89,94,108,106,104,120,137,142,147,
%U A358901 150,161,174,190,200,220,226,224,248,274,274,287,301,320,340,351,361
%N A358901 Number of integer partitions of n whose parts have all different numbers of prime factors (A001222).
%H A358901 Alois P. Heinz, <a href="/A358901/b358901.txt">Table of n, a(n) for n = 0..5000</a> (first 101 terms from Lucas A. Brown)
%H A358901 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A358901.py">Python program</a>.
%e A358901 The a(1) = 1 through a(11) = 7 partitions:
%e A358901   (1)  (2)  (3)   (4)   (5)   (6)   (7)    (8)    (9)    (A)    (B)
%e A358901             (21)  (31)  (41)  (42)  (43)   (62)   (54)   (82)   (74)
%e A358901                               (51)  (61)   (71)   (63)   (91)   (65)
%e A358901                                     (421)  (431)  (81)   (451)  (83)
%e A358901                                                   (621)  (631)  (92)
%e A358901                                                                 (A1)
%e A358901                                                                 (821)
%t A358901 Table[Length[Select[IntegerPartitions[n],UnsameQ@@PrimeOmega/@#&]],{n,0,60}]
%Y A358901 The weakly decreasing version is A358909 (complement A358910).
%Y A358901 The version not counting multiplicity is A358903, weakly decreasing A358902.
%Y A358901 For equal numbers of prime factors we have A319169, compositions A358911.
%Y A358901 A001222 counts prime factors, distinct A001221.
%Y A358901 A063834 counts twice-partitions.
%Y A358901 A358836 counts multiset partitions with all distinct block sizes.
%Y A358901 Cf. A056239, A129519, A141199, A218482, A300335, A319071, A320324, A358335, A358831, A358908.
%K A358901 nonn
%O A358901 0,4
%A A358901 _Gus Wiseman_, Dec 07 2022
%E A358901 a(61) and beyond from _Lucas A. Brown_, Dec 14 2022