This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358902 #19 Feb 14 2024 09:56:49 %S A358902 1,1,2,3,5,8,13,21,33,53,84,134,213,338,536,850,1349,2136,3389,5367, %T A358902 8509,13480,21362,33843,53624,84957,134600,213251,337850,535251, %U A358902 847987,1343440,2128372,3371895,5341977,8463051,13407689,21241181,33651507,53312538,84460690 %N A358902 Number of integer compositions of n whose parts have weakly decreasing numbers of distinct prime factors (A001221). %H A358902 Alois P. Heinz, <a href="/A358902/b358902.txt">Table of n, a(n) for n = 0..5004</a> (first 101 terms from Lucas A. Brown) %H A358902 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A358902.py">Python program</a>. %e A358902 The a(0) = 1 through a(6) = 13 compositions: %e A358902 () (1) (2) (3) (4) (5) (6) %e A358902 (11) (21) (22) (23) (24) %e A358902 (111) (31) (32) (33) %e A358902 (211) (41) (42) %e A358902 (1111) (221) (51) %e A358902 (311) (222) %e A358902 (2111) (231) %e A358902 (11111) (321) %e A358902 (411) %e A358902 (2211) %e A358902 (3111) %e A358902 (21111) %e A358902 (111111) %p A358902 p:= proc(n) option remember; nops(ifactors(n)[2]) end: %p A358902 b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<0, 0, %p A358902 add((t-> `if`(t<=i, b(n-j, t), 0))(p(j)), j=1..n))) %p A358902 end: %p A358902 a:= n-> b(n$2): %p A358902 seq(a(n), n=0..40); # _Alois P. Heinz_, Feb 14 2024 %t A358902 Table[Length[Select[Join@@Permutations/@IntegerPartitions[n],GreaterEqual@@PrimeNu/@#&]],{n,0,10}] %Y A358902 For lengths of partitions see A141199, compositions A218482. %Y A358902 The strictly decreasing case is A358903. %Y A358902 A001222 counts prime factors, distinct A001221. %Y A358902 A011782 counts compositions. %Y A358902 A116608 counts partitions by sum and number of distinct parts. %Y A358902 A334028 counts distinct parts in standard compositions. %Y A358902 A358836 counts multiset partitions with all distinct block sizes. %Y A358902 Cf. A046660, A056239, A071625, A129519, A300335, A358831, A358908, A358911. %K A358902 nonn %O A358902 0,3 %A A358902 _Gus Wiseman_, Dec 07 2022 %E A358902 a(21) and beyond from _Lucas A. Brown_, Dec 15 2022