This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358904 #13 Dec 14 2022 10:56:05 %S A358904 1,1,2,4,9,16,38,64,156,260,632,1024,2601,4096,10208,16944,40966, %T A358904 65536,168672,262144,656980,1090240,2620928,4194304,10862100,16781584, %U A358904 41940992,69872384,168403448,268435456,693528552,1073741824,2695006177,4473400320,10737385472 %N A358904 Number of finite sets of compositions with all equal sums and total sum n. %F A358904 a(n>0) = Sum_{d|n} binomial(2^(d-1),n/d). %e A358904 The a(1) = 1 through a(4) = 9 sets: %e A358904 {(1)} {(2)} {(3)} {(4)} %e A358904 {(11)} {(12)} {(13)} %e A358904 {(21)} {(22)} %e A358904 {(111)} {(31)} %e A358904 {(112)} %e A358904 {(121)} %e A358904 {(211)} %e A358904 {(1111)} %e A358904 {(2),(11)} %t A358904 Table[If[n==0,1,Sum[Binomial[2^(d-1),n/d],{d,Divisors[n]}]],{n,0,30}] %o A358904 (PARI) a(n) = if (n, sumdiv(n, d, binomial(2^(d-1), n/d)), 1); \\ _Michel Marcus_, Dec 14 2022 %Y A358904 This is the constant-sum case of A098407, ordered A358907. %Y A358904 The version for distinct sums is A304961, ordered A336127. %Y A358904 Allowing repetition gives A305552, ordered A074854. %Y A358904 The case of sets of partitions is A359041. %Y A358904 A001970 counts multisets of partitions. %Y A358904 A034691 counts multisets of compositions, ordered A133494. %Y A358904 A261049 counts sets of partitions, ordered A358906. %Y A358904 Cf. A000009, A063834, A075900, A218482, A296122. %K A358904 nonn %O A358904 0,3 %A A358904 _Gus Wiseman_, Dec 13 2022