cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358904 Number of finite sets of compositions with all equal sums and total sum n.

This page as a plain text file.
%I A358904 #13 Dec 14 2022 10:56:05
%S A358904 1,1,2,4,9,16,38,64,156,260,632,1024,2601,4096,10208,16944,40966,
%T A358904 65536,168672,262144,656980,1090240,2620928,4194304,10862100,16781584,
%U A358904 41940992,69872384,168403448,268435456,693528552,1073741824,2695006177,4473400320,10737385472
%N A358904 Number of finite sets of compositions with all equal sums and total sum n.
%F A358904 a(n>0) = Sum_{d|n} binomial(2^(d-1),n/d).
%e A358904 The a(1) = 1 through a(4) = 9 sets:
%e A358904   {(1)}  {(2)}   {(3)}    {(4)}
%e A358904          {(11)}  {(12)}   {(13)}
%e A358904                  {(21)}   {(22)}
%e A358904                  {(111)}  {(31)}
%e A358904                           {(112)}
%e A358904                           {(121)}
%e A358904                           {(211)}
%e A358904                           {(1111)}
%e A358904                           {(2),(11)}
%t A358904 Table[If[n==0,1,Sum[Binomial[2^(d-1),n/d],{d,Divisors[n]}]],{n,0,30}]
%o A358904 (PARI) a(n) = if (n, sumdiv(n, d, binomial(2^(d-1), n/d)), 1); \\ _Michel Marcus_, Dec 14 2022
%Y A358904 This is the constant-sum case of A098407, ordered A358907.
%Y A358904 The version for distinct sums is A304961, ordered A336127.
%Y A358904 Allowing repetition gives A305552, ordered A074854.
%Y A358904 The case of sets of partitions is A359041.
%Y A358904 A001970 counts multisets of partitions.
%Y A358904 A034691 counts multisets of compositions, ordered A133494.
%Y A358904 A261049 counts sets of partitions, ordered A358906.
%Y A358904 Cf. A000009, A063834, A075900, A218482, A296122.
%K A358904 nonn
%O A358904 0,3
%A A358904 _Gus Wiseman_, Dec 13 2022