This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358905 #10 Dec 31 2022 11:20:07 %S A358905 1,1,3,6,13,24,49,91,179,341,664,1280,2503,4872,9557,18750,36927, %T A358905 72800,143880,284660,564093,1118911,2221834,4415417,8781591,17476099, %U A358905 34799199,69327512,138176461,275503854,549502119,1096327380,2187894634,4367310138,8719509111 %N A358905 Number of sequences of integer partitions with total sum n that are rectangular, meaning all lengths are equal. %H A358905 Andrew Howroyd, <a href="/A358905/b358905.txt">Table of n, a(n) for n = 0..1000</a> %F A358905 G.f.: 1 + Sum_{k>=1} (1/(1 - [y^k]P(x,y)) - 1) where P(x,y) = 1/Product_{k>=1} (1 - y*x^k). - _Andrew Howroyd_, Dec 31 2022 %e A358905 The a(0) = 1 through a(4) = 13 sequences: %e A358905 () ((1)) ((2)) ((3)) ((4)) %e A358905 ((11)) ((21)) ((22)) %e A358905 ((1)(1)) ((111)) ((31)) %e A358905 ((1)(2)) ((211)) %e A358905 ((2)(1)) ((1111)) %e A358905 ((1)(1)(1)) ((1)(3)) %e A358905 ((2)(2)) %e A358905 ((3)(1)) %e A358905 ((11)(11)) %e A358905 ((1)(1)(2)) %e A358905 ((1)(2)(1)) %e A358905 ((2)(1)(1)) %e A358905 ((1)(1)(1)(1)) %t A358905 ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}]; %t A358905 Table[Length[Select[ptnseq[n],SameQ@@Length/@#&]],{n,0,10}] %o A358905 (PARI) %o A358905 P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))} %o A358905 seq(n) = {my(g=P(n,y)); Vec(1 + sum(k=1, n, 1/(1 - polcoef(g, k, y)) - 1))} \\ _Andrew Howroyd_, Dec 31 2022 %Y A358905 The case of set partitions is A038041. %Y A358905 The version for weakly decreasing lengths is A141199, strictly A358836. %Y A358905 For equal sums instead of lengths we have A279787. %Y A358905 The case of twice-partitions is A306319, distinct A358830. %Y A358905 The unordered version is A319066. %Y A358905 The case of plane partitions is A323429. %Y A358905 The case of constant sums also is A358833. %Y A358905 A055887 counts sequences of partitions with total sum n. %Y A358905 A281145 counts same-trees. %Y A358905 A319169 counts partitions with constant Omega, ranked by A320324. %Y A358905 A358911 counts compositions with constant Omega, distinct A358912. %Y A358905 Cf. A000041, A000219, A001970, A063834, A218482, A305551, A358835. %K A358905 nonn %O A358905 0,3 %A A358905 _Gus Wiseman_, Dec 07 2022 %E A358905 Terms a(16) and beyond from _Andrew Howroyd_, Dec 31 2022