This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358906 #22 Feb 13 2024 19:42:43 %S A358906 1,1,2,7,13,35,87,191,470,1080,2532,5778,13569,30715,69583,160386, %T A358906 360709,814597,1824055,4102430,9158405,20378692,45215496,100055269, %U A358906 221388993,486872610,1069846372,2343798452,5127889666,11186214519,24351106180,52896439646 %N A358906 Number of finite sequences of distinct integer partitions with total sum n. %H A358906 Alois P. Heinz, <a href="/A358906/b358906.txt">Table of n, a(n) for n = 0..1000</a> %F A358906 a(n) = Sum_{k} A330463(n,k) * k!. %e A358906 The a(1) = 1 through a(4) = 13 sequences: %e A358906 ((1)) ((2)) ((3)) ((4)) %e A358906 ((11)) ((21)) ((22)) %e A358906 ((111)) ((31)) %e A358906 ((1)(2)) ((211)) %e A358906 ((2)(1)) ((1111)) %e A358906 ((1)(11)) ((1)(3)) %e A358906 ((11)(1)) ((3)(1)) %e A358906 ((11)(2)) %e A358906 ((1)(21)) %e A358906 ((2)(11)) %e A358906 ((21)(1)) %e A358906 ((1)(111)) %e A358906 ((111)(1)) %p A358906 b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add( %p A358906 binomial(combinat[numbpart](i), j)*b(n-i*j, i-1, p+j), j=0..n/i))) %p A358906 end: %p A358906 a:= n-> b(n$2, 0): %p A358906 seq(a(n), n=0..32); # _Alois P. Heinz_, Feb 13 2024 %t A358906 ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}]; %t A358906 Table[Length[Select[ptnseq[n],UnsameQ@@#&]],{n,0,10}] %Y A358906 This is the case of A055887 with distinct partitions. %Y A358906 The unordered version is A261049. %Y A358906 The case of twice-partitions is A296122. %Y A358906 The case of distinct sums is A336342, constant sums A279787. %Y A358906 The version for sequences of compositions is A358907. %Y A358906 The case of weakly decreasing lengths is A358908. %Y A358906 The case of distinct lengths is A358912. %Y A358906 The version for strict partitions is A358913, distinct case of A304969. %Y A358906 A001970 counts multiset partitions of integer partitions. %Y A358906 A063834 counts twice-partitions. %Y A358906 A358830 counts twice-partitions with distinct lengths. %Y A358906 A358901 counts partitions with all distinct Omegas. %Y A358906 Cf. A000009, A000041, A000219, A098407, A271619, A330463, A358836, A358901, A358914. %K A358906 nonn %O A358906 0,3 %A A358906 _Gus Wiseman_, Dec 07 2022