cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358906 Number of finite sequences of distinct integer partitions with total sum n.

This page as a plain text file.
%I A358906 #22 Feb 13 2024 19:42:43
%S A358906 1,1,2,7,13,35,87,191,470,1080,2532,5778,13569,30715,69583,160386,
%T A358906 360709,814597,1824055,4102430,9158405,20378692,45215496,100055269,
%U A358906 221388993,486872610,1069846372,2343798452,5127889666,11186214519,24351106180,52896439646
%N A358906 Number of finite sequences of distinct integer partitions with total sum n.
%H A358906 Alois P. Heinz, <a href="/A358906/b358906.txt">Table of n, a(n) for n = 0..1000</a>
%F A358906 a(n) = Sum_{k} A330463(n,k) * k!.
%e A358906 The a(1) = 1 through a(4) = 13 sequences:
%e A358906   ((1))  ((2))   ((3))      ((4))
%e A358906          ((11))  ((21))     ((22))
%e A358906                  ((111))    ((31))
%e A358906                  ((1)(2))   ((211))
%e A358906                  ((2)(1))   ((1111))
%e A358906                  ((1)(11))  ((1)(3))
%e A358906                  ((11)(1))  ((3)(1))
%e A358906                             ((11)(2))
%e A358906                             ((1)(21))
%e A358906                             ((2)(11))
%e A358906                             ((21)(1))
%e A358906                             ((1)(111))
%e A358906                             ((111)(1))
%p A358906 b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, add(
%p A358906       binomial(combinat[numbpart](i), j)*b(n-i*j, i-1, p+j), j=0..n/i)))
%p A358906     end:
%p A358906 a:= n-> b(n$2, 0):
%p A358906 seq(a(n), n=0..32);  # _Alois P. Heinz_, Feb 13 2024
%t A358906 ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
%t A358906 Table[Length[Select[ptnseq[n],UnsameQ@@#&]],{n,0,10}]
%Y A358906 This is the case of A055887 with distinct partitions.
%Y A358906 The unordered version is A261049.
%Y A358906 The case of twice-partitions is A296122.
%Y A358906 The case of distinct sums is A336342, constant sums A279787.
%Y A358906 The version for sequences of compositions is A358907.
%Y A358906 The case of weakly decreasing lengths is A358908.
%Y A358906 The case of distinct lengths is A358912.
%Y A358906 The version for strict partitions is A358913, distinct case of A304969.
%Y A358906 A001970 counts multiset partitions of integer partitions.
%Y A358906 A063834 counts twice-partitions.
%Y A358906 A358830 counts twice-partitions with distinct lengths.
%Y A358906 A358901 counts partitions with all distinct Omegas.
%Y A358906 Cf. A000009, A000041, A000219, A098407, A271619, A330463, A358836, A358901, A358914.
%K A358906 nonn
%O A358906 0,3
%A A358906 _Gus Wiseman_, Dec 07 2022