This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358907 #11 Dec 15 2022 17:43:29 %S A358907 1,1,2,8,18,54,156,412,1168,3200,8848,24192,66632,181912,495536, %T A358907 1354880,3680352,9997056,27093216,73376512,198355840,535319168, %U A358907 1443042688,3884515008,10445579840,28046885824,75225974912,201536064896,539339293824,1441781213952 %N A358907 Number of finite sequences of distinct integer compositions with total sum n. %H A358907 Alois P. Heinz, <a href="/A358907/b358907.txt">Table of n, a(n) for n = 0..1000</a> %e A358907 The a(1) = 1 through a(4) = 18 sequences: %e A358907 ((1)) ((2)) ((3)) ((4)) %e A358907 ((11)) ((12)) ((13)) %e A358907 ((21)) ((22)) %e A358907 ((111)) ((31)) %e A358907 ((1)(2)) ((112)) %e A358907 ((2)(1)) ((121)) %e A358907 ((1)(11)) ((211)) %e A358907 ((11)(1)) ((1111)) %e A358907 ((1)(3)) %e A358907 ((3)(1)) %e A358907 ((1)(12)) %e A358907 ((11)(2)) %e A358907 ((1)(21)) %e A358907 ((12)(1)) %e A358907 ((2)(11)) %e A358907 ((21)(1)) %e A358907 ((1)(111)) %e A358907 ((111)(1)) %p A358907 g:= proc(n) option remember; ceil(2^(n-1)) end: %p A358907 b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, (t-> %p A358907 add(binomial(t, j)*b(n-i*j, i-1, p+j), j=0..min(t, n/i)))(g(i)))) %p A358907 end: %p A358907 a:= n-> b(n$2, 0): %p A358907 seq(a(n), n=0..32); # _Alois P. Heinz_, Dec 15 2022 %t A358907 comps[n_]:=Join@@Permutations/@IntegerPartitions[n]; %t A358907 Table[Length[Select[Join@@Table[Tuples[comps/@c],{c,comps[n]}],UnsameQ@@#&]],{n,0,10}] %Y A358907 For sets instead of sequences we have A098407, partitions A261049. %Y A358907 This is the strict case of A133494. %Y A358907 The case of distinct sums is A336127, constant sums A074854. %Y A358907 The version for sequences of partitions is A358906. %Y A358907 A001970 counts multiset partitions of integer partitions. %Y A358907 A063834 counts twice-partitions. %Y A358907 A218482 counts sequences of compositions with weakly decreasing lengths. %Y A358907 A358830 counts twice-partitions with distinct lengths. %Y A358907 A358901 counts partitions with all different Omegas. %Y A358907 A358914 counts twice-partitions into distinct strict partitions. %Y A358907 Cf. A000009, A000041, A000219, A055887, A075900, A296122, A304961, A307068, A336342, A358836, A358912. %K A358907 nonn %O A358907 0,3 %A A358907 _Gus Wiseman_, Dec 07 2022 %E A358907 a(16)-a(29) from _Alois P. Heinz_, Dec 15 2022