cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358907 Number of finite sequences of distinct integer compositions with total sum n.

This page as a plain text file.
%I A358907 #11 Dec 15 2022 17:43:29
%S A358907 1,1,2,8,18,54,156,412,1168,3200,8848,24192,66632,181912,495536,
%T A358907 1354880,3680352,9997056,27093216,73376512,198355840,535319168,
%U A358907 1443042688,3884515008,10445579840,28046885824,75225974912,201536064896,539339293824,1441781213952
%N A358907 Number of finite sequences of distinct integer compositions with total sum n.
%H A358907 Alois P. Heinz, <a href="/A358907/b358907.txt">Table of n, a(n) for n = 0..1000</a>
%e A358907 The a(1) = 1 through a(4) = 18 sequences:
%e A358907   ((1))  ((2))   ((3))      ((4))
%e A358907          ((11))  ((12))     ((13))
%e A358907                  ((21))     ((22))
%e A358907                  ((111))    ((31))
%e A358907                  ((1)(2))   ((112))
%e A358907                  ((2)(1))   ((121))
%e A358907                  ((1)(11))  ((211))
%e A358907                  ((11)(1))  ((1111))
%e A358907                             ((1)(3))
%e A358907                             ((3)(1))
%e A358907                             ((1)(12))
%e A358907                             ((11)(2))
%e A358907                             ((1)(21))
%e A358907                             ((12)(1))
%e A358907                             ((2)(11))
%e A358907                             ((21)(1))
%e A358907                             ((1)(111))
%e A358907                             ((111)(1))
%p A358907 g:= proc(n) option remember; ceil(2^(n-1)) end:
%p A358907 b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, (t->
%p A358907       add(binomial(t, j)*b(n-i*j, i-1, p+j), j=0..min(t, n/i)))(g(i))))
%p A358907     end:
%p A358907 a:= n-> b(n$2, 0):
%p A358907 seq(a(n), n=0..32);  # _Alois P. Heinz_, Dec 15 2022
%t A358907 comps[n_]:=Join@@Permutations/@IntegerPartitions[n];
%t A358907 Table[Length[Select[Join@@Table[Tuples[comps/@c],{c,comps[n]}],UnsameQ@@#&]],{n,0,10}]
%Y A358907 For sets instead of sequences we have A098407, partitions A261049.
%Y A358907 This is the strict case of A133494.
%Y A358907 The case of distinct sums is A336127, constant sums A074854.
%Y A358907 The version for sequences of partitions is A358906.
%Y A358907 A001970 counts multiset partitions of integer partitions.
%Y A358907 A063834 counts twice-partitions.
%Y A358907 A218482 counts sequences of compositions with weakly decreasing lengths.
%Y A358907 A358830 counts twice-partitions with distinct lengths.
%Y A358907 A358901 counts partitions with all different Omegas.
%Y A358907 A358914 counts twice-partitions into distinct strict partitions.
%Y A358907 Cf. A000009, A000041, A000219, A055887, A075900, A296122, A304961, A307068, A336342, A358836, A358912.
%K A358907 nonn
%O A358907 0,3
%A A358907 _Gus Wiseman_, Dec 07 2022
%E A358907 a(16)-a(29) from _Alois P. Heinz_, Dec 15 2022