This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358908 #9 Dec 31 2022 11:20:14 %S A358908 1,1,2,6,10,23,50,95,188,378,747,1414,2739,5179,9811,18562,34491, %T A358908 64131,118607,218369,400196,731414,1328069,2406363,4346152,7819549, %U A358908 14027500,25090582,44749372,79586074,141214698,249882141,441176493,777107137,1365801088,2395427040,4192702241 %N A358908 Number of finite sequences of distinct integer partitions with total sum n and weakly decreasing lengths. %H A358908 Andrew Howroyd, <a href="/A358908/b358908.txt">Table of n, a(n) for n = 0..200</a> %e A358908 The a(1) = 1 through a(4) = 10 sequences: %e A358908 ((1)) ((2)) ((3)) ((4)) %e A358908 ((11)) ((21)) ((22)) %e A358908 ((111)) ((31)) %e A358908 ((1)(2)) ((211)) %e A358908 ((2)(1)) ((1111)) %e A358908 ((11)(1)) ((1)(3)) %e A358908 ((3)(1)) %e A358908 ((11)(2)) %e A358908 ((21)(1)) %e A358908 ((111)(1)) %t A358908 ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}]; %t A358908 Table[Length[Select[ptnseq[n],UnsameQ@@#&&GreaterEqual@@Length/@#&]],{n,0,10}] %o A358908 (PARI) %o A358908 P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))} %o A358908 R(n,v) = {[subst(serlaplace(p), y, 1) | p<-Vec(prod(k=1, #v, (1 + y*x^k + O(x*x^n))^v[k] ))]} %o A358908 seq(n) = {my(g=P(n,y)); Vec(prod(k=1, n, Ser(R(n, Vec(polcoef(g, k, y), -n))) ))} \\ _Andrew Howroyd_, Dec 31 2022 %Y A358908 This is the distinct case of A055887 with weakly decreasing lengths. %Y A358908 This is the distinct case is A141199. %Y A358908 The case of distinct lengths also is A358836. %Y A358908 This is the case of A358906 with weakly decreasing lengths. %Y A358908 A000041 counts integer partitions, strict A000009. %Y A358908 A001970 counts multiset partitions of integer partitions. %Y A358908 A063834 counts twice-partitions. %Y A358908 A358830 counts twice-partitions with distinct lengths. %Y A358908 A358901 counts partitions with all distinct Omegas. %Y A358908 A358912 counts sequences of partitions with distinct lengths. %Y A358908 A358914 counts twice-partitions into distinct strict partitions. %Y A358908 Cf. A000219, A261049, A271619, A296122, A358831, A358901, A358905, A358907. %K A358908 nonn %O A358908 0,3 %A A358908 _Gus Wiseman_, Dec 09 2022 %E A358908 Terms a(16) and beyond from _Andrew Howroyd_, Dec 31 2022