This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358911 #17 Feb 12 2024 19:02:44 %S A358911 1,1,2,2,3,4,4,7,9,12,20,21,39,49,79,109,161,236,345,512,752,1092, %T A358911 1628,2376,3537,5171,7650,11266,16634,24537,36173,53377,78791,116224, %U A358911 171598,253109,373715,551434,814066,1201466,1773425,2617744,3864050,5703840,8419699 %N A358911 Number of integer compositions of n whose parts all have the same number of prime factors, counted with multiplicity. %H A358911 Alois P. Heinz, <a href="/A358911/b358911.txt">Table of n, a(n) for n = 0..4000</a> (first 101 terms from Lucas A. Brown) %H A358911 Lucas A. Brown, <a href="https://github.com/lucasaugustus/oeis/blob/main/A358911.py">Python program</a>. %e A358911 The a(1) = 1 through a(8) = 9 compositions: %e A358911 (1) (2) (3) (4) (5) (6) (7) (8) %e A358911 (11) (111) (22) (23) (33) (25) (35) %e A358911 (1111) (32) (222) (52) (44) %e A358911 (11111) (111111) (223) (53) %e A358911 (232) (233) %e A358911 (322) (323) %e A358911 (1111111) (332) %e A358911 (2222) %e A358911 (11111111) %p A358911 b:= proc(n, i) option remember; uses numtheory; `if`(n=0, 1, add( %p A358911 (t-> `if`(i<0 or i=t, b(n-j, t), 0))(bigomega(j)), j=1..n)) %p A358911 end: %p A358911 a:= n-> b(n, -1): %p A358911 seq(a(n), n=0..44); # _Alois P. Heinz_, Feb 12 2024 %t A358911 Table[Length[Select[Join @@ Permutations/@IntegerPartitions[n],SameQ@@PrimeOmega/@#&]],{n,0,10}] %Y A358911 The case of partitions is A319169, ranked by A320324. %Y A358911 The weakly decreasing version is A358335, strictly A358901. %Y A358911 For sequences of partitions see A358905. %Y A358911 A001222 counts prime factors, distinct A001221. %Y A358911 A011782 counts compositions. %Y A358911 A358902 = compositions with weakly decreasing A001221, strictly A358903. %Y A358911 A358909 = partitions with weakly decreasing A001222, complement A358910. %Y A358911 Cf. A056239, A063834, A064573, A218482, A279787, A300335, A319066, A319071, A358831, A358908. %K A358911 nonn %O A358911 0,3 %A A358911 _Gus Wiseman_, Dec 11 2022 %E A358911 a(21) and beyond from _Lucas A. Brown_, Dec 15 2022