This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358912 #12 Dec 31 2022 11:20:20 %S A358912 1,1,2,5,11,23,49,103,214,434,874,1738,3443,6765,13193,25512,48957, %T A358912 93267,176595,332550,622957,1161230,2153710,3974809,7299707,13343290, %U A358912 24280924,43999100,79412942,142792535,255826836,456735456,812627069,1440971069,2546729830 %N A358912 Number of finite sequences of integer partitions with total sum n and all distinct lengths. %H A358912 Andrew Howroyd, <a href="/A358912/b358912.txt">Table of n, a(n) for n = 0..1000</a> %e A358912 The a(1) = 1 through a(4) = 11 sequences: %e A358912 (1) (2) (3) (4) %e A358912 (11) (21) (22) %e A358912 (111) (31) %e A358912 (1)(11) (211) %e A358912 (11)(1) (1111) %e A358912 (11)(2) %e A358912 (1)(21) %e A358912 (2)(11) %e A358912 (21)(1) %e A358912 (1)(111) %e A358912 (111)(1) %t A358912 ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}]; %t A358912 Table[Length[Select[ptnseq[n],UnsameQ@@Length/@#&]],{n,0,10}] %o A358912 (PARI) %o A358912 P(n,y) = {1/prod(k=1, n, 1 - y*x^k + O(x*x^n))} %o A358912 seq(n) = {my(g=P(n,y)); [subst(serlaplace(p), y, 1) | p<-Vec(prod(k=1, n, 1 + y*polcoef(g, k, y) + O(x*x^n)))]} \\ _Andrew Howroyd_, Dec 30 2022 %Y A358912 The case of set partitions is A007837. %Y A358912 This is the case of A055887 with all distinct lengths. %Y A358912 For distinct sums instead of lengths we have A336342. %Y A358912 The case of twice-partitions is A358830. %Y A358912 The unordered version is A358836. %Y A358912 The version for constant instead of distinct lengths is A358905. %Y A358912 A000041 counts integer partitions, strict A000009. %Y A358912 A063834 counts twice-partitions. %Y A358912 A141199 counts sequences of partitions with weakly decreasing lengths. %Y A358912 Cf. A000219, A001970, A038041, A060642, A218482, A271619, A319066, A358831, A358901, A358906, A358908. %K A358912 nonn %O A358912 0,3 %A A358912 _Gus Wiseman_, Dec 07 2022 %E A358912 Terms a(16) and beyond from _Andrew Howroyd_, Dec 30 2022