cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358913 Number of finite sequences of distinct sets with total sum n.

This page as a plain text file.
%I A358913 #10 Feb 13 2024 20:09:46
%S A358913 1,1,1,4,6,11,28,45,86,172,344,608,1135,2206,4006,7689,13748,25502,
%T A358913 47406,86838,157560,286642,522089,941356,1718622,3079218,5525805,
%U A358913 9902996,17788396,31742616,56694704,100720516,178468026,317019140,560079704,991061957
%N A358913 Number of finite sequences of distinct sets with total sum n.
%H A358913 Alois P. Heinz, <a href="/A358913/b358913.txt">Table of n, a(n) for n = 0..1000</a>
%F A358913 a(n) = Sum_{k} A330462(n,k) * k!.
%e A358913 The a(1) = 1 through a(5) = 11 sequences of sets:
%e A358913   ({1})  ({2})  ({3})      ({4})        ({5})
%e A358913                 ({1,2})    ({1,3})      ({1,4})
%e A358913                 ({1},{2})  ({1},{3})    ({2,3})
%e A358913                 ({2},{1})  ({3},{1})    ({1},{4})
%e A358913                            ({1},{1,2})  ({2},{3})
%e A358913                            ({1,2},{1})  ({3},{2})
%e A358913                                         ({4},{1})
%e A358913                                         ({1},{1,3})
%e A358913                                         ({1,2},{2})
%e A358913                                         ({1,3},{1})
%e A358913                                         ({2},{1,2})
%p A358913 g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add(
%p A358913      `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n)
%p A358913     end:
%p A358913 b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
%p A358913       add(binomial(g(i), j)*b(n-i*j, i-1, p+j), j=0..n/i)))
%p A358913     end:
%p A358913 a:= n-> b(n$2, 0):
%p A358913 seq(a(n), n=0..35);  # _Alois P. Heinz_, Feb 13 2024
%t A358913 ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}];
%t A358913 Table[Length[Select[ptnseq[n],UnsameQ@@#&&And@@UnsameQ@@@#&]],{n,0,10}]
%Y A358913 The unordered version is A050342, non-strict A261049.
%Y A358913 The case of strictly decreasing sums is A279785.
%Y A358913 This is the distinct case of A304969.
%Y A358913 The case of distinct sums is A336343, constant sums A279791.
%Y A358913 This is the case of A358906 with strict partitions.
%Y A358913 The version for compositions instead of strict partitions is A358907.
%Y A358913 The case of twice-partitions is A358914.
%Y A358913 A001970 counts multiset partitions of integer partitions.
%Y A358913 A055887 counts sequences of partitions.
%Y A358913 A063834 counts twice-partitions.
%Y A358913 A330462 counts set systems by total sum and length.
%Y A358913 A358830 counts twice-partitions with distinct lengths.
%Y A358913 Cf. A000009, A000041, A000219, A271619, A296122, A336342, A358908.
%K A358913 nonn
%O A358913 0,4
%A A358913 _Gus Wiseman_, Dec 11 2022