This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358913 #10 Feb 13 2024 20:09:46 %S A358913 1,1,1,4,6,11,28,45,86,172,344,608,1135,2206,4006,7689,13748,25502, %T A358913 47406,86838,157560,286642,522089,941356,1718622,3079218,5525805, %U A358913 9902996,17788396,31742616,56694704,100720516,178468026,317019140,560079704,991061957 %N A358913 Number of finite sequences of distinct sets with total sum n. %H A358913 Alois P. Heinz, <a href="/A358913/b358913.txt">Table of n, a(n) for n = 0..1000</a> %F A358913 a(n) = Sum_{k} A330462(n,k) * k!. %e A358913 The a(1) = 1 through a(5) = 11 sequences of sets: %e A358913 ({1}) ({2}) ({3}) ({4}) ({5}) %e A358913 ({1,2}) ({1,3}) ({1,4}) %e A358913 ({1},{2}) ({1},{3}) ({2,3}) %e A358913 ({2},{1}) ({3},{1}) ({1},{4}) %e A358913 ({1},{1,2}) ({2},{3}) %e A358913 ({1,2},{1}) ({3},{2}) %e A358913 ({4},{1}) %e A358913 ({1},{1,3}) %e A358913 ({1,2},{2}) %e A358913 ({1,3},{1}) %e A358913 ({2},{1,2}) %p A358913 g:= proc(n) option remember; `if`(n=0, 1, add(g(n-j)*add( %p A358913 `if`(d::odd, d, 0), d=numtheory[divisors](j)), j=1..n)/n) %p A358913 end: %p A358913 b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0, %p A358913 add(binomial(g(i), j)*b(n-i*j, i-1, p+j), j=0..n/i))) %p A358913 end: %p A358913 a:= n-> b(n$2, 0): %p A358913 seq(a(n), n=0..35); # _Alois P. Heinz_, Feb 13 2024 %t A358913 ptnseq[n_]:=Join@@Table[Tuples[IntegerPartitions/@comp],{comp,Join@@Permutations/@IntegerPartitions[n]}]; %t A358913 Table[Length[Select[ptnseq[n],UnsameQ@@#&&And@@UnsameQ@@@#&]],{n,0,10}] %Y A358913 The unordered version is A050342, non-strict A261049. %Y A358913 The case of strictly decreasing sums is A279785. %Y A358913 This is the distinct case of A304969. %Y A358913 The case of distinct sums is A336343, constant sums A279791. %Y A358913 This is the case of A358906 with strict partitions. %Y A358913 The version for compositions instead of strict partitions is A358907. %Y A358913 The case of twice-partitions is A358914. %Y A358913 A001970 counts multiset partitions of integer partitions. %Y A358913 A055887 counts sequences of partitions. %Y A358913 A063834 counts twice-partitions. %Y A358913 A330462 counts set systems by total sum and length. %Y A358913 A358830 counts twice-partitions with distinct lengths. %Y A358913 Cf. A000009, A000041, A000219, A271619, A296122, A336342, A358908. %K A358913 nonn %O A358913 0,4 %A A358913 _Gus Wiseman_, Dec 11 2022