This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358914 #8 Dec 31 2022 14:53:24 %S A358914 1,1,1,3,4,7,13,20,32,51,83,130,206,320,496,759,1171,1786,2714,4104, %T A358914 6193,9286,13920,20737,30865,45721,67632,99683,146604,214865,314782, %U A358914 459136,668867,972425,1410458,2040894,2950839,4253713,6123836,8801349,12627079 %N A358914 Number of twice-partitions of n into distinct strict partitions. %C A358914 A twice-partition of n (A063834) is a sequence of integer partitions, one of each part of an integer partition of n. %H A358914 Andrew Howroyd, <a href="/A358914/b358914.txt">Table of n, a(n) for n = 0..100</a> %e A358914 The a(1) = 1 through a(6) = 13 twice-partitions: %e A358914 ((1)) ((2)) ((3)) ((4)) ((5)) ((6)) %e A358914 ((21)) ((31)) ((32)) ((42)) %e A358914 ((2)(1)) ((3)(1)) ((41)) ((51)) %e A358914 ((21)(1)) ((3)(2)) ((321)) %e A358914 ((4)(1)) ((4)(2)) %e A358914 ((21)(2)) ((5)(1)) %e A358914 ((31)(1)) ((21)(3)) %e A358914 ((31)(2)) %e A358914 ((3)(21)) %e A358914 ((32)(1)) %e A358914 ((41)(1)) %e A358914 ((3)(2)(1)) %e A358914 ((21)(2)(1)) %t A358914 twiptn[n_]:=Join@@Table[Tuples[IntegerPartitions/@ptn],{ptn,IntegerPartitions[n]}]; %t A358914 Table[Length[Select[twiptn[n],UnsameQ@@#&&And@@UnsameQ@@@#&]],{n,0,10}] %o A358914 (PARI) seq(n,k)={my(u=Vec(eta(x^2 + O(x*x^n))/eta(x + O(x*x^n))-1)); Vec(prod(k=1, n, my(c=u[k]); sum(j=0, min(c,n\k), x^(j*k)*c!/(c-j)!, O(x*x^n))))} \\ _Andrew Howroyd_, Dec 31 2022 %Y A358914 The unordered version is A050342, non-strict A261049. %Y A358914 This is the distinct case of A270995. %Y A358914 The case of strictly decreasing sums is A279785. %Y A358914 The case of constant sums is A279791. %Y A358914 For distinct instead of weakly decreasing sums we have A336343. %Y A358914 This is the twice-partition case of A358913. %Y A358914 A001970 counts multiset partitions of integer partitions. %Y A358914 A055887 counts sequences of partitions. %Y A358914 A063834 counts twice-partitions. %Y A358914 A330462 counts set systems by total sum and length. %Y A358914 A358830 counts twice-partitions with distinct lengths. %Y A358914 Cf. A000009, A000219, A075900, A271619, A296122, A304969, A321449, A336342, A358901, A358906, A358907. %K A358914 nonn %O A358914 0,4 %A A358914 _Gus Wiseman_, Dec 11 2022 %E A358914 Terms a(26) and beyond from _Andrew Howroyd_, Dec 31 2022