This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358918 #20 Dec 12 2022 15:00:16 %S A358918 0,1,2,1,2,4,6,2,7,9,1,6,7,9,12,9,12,13,14,17,1,14,17,18,20,18,20,22, %T A358918 26,18,20,28,30,26,22,28,30,30,32,3,28,30,32,3,28,38,40,22,34,46,26, %U A358918 41,31,45,42,40,37,41,31,58,60,53,54,57,57,57,57,57,57,57 %N A358918 a(0) = 0, and for any n >= 0, a(n+1) is the length of the longest run of consecutive terms a(i), ..., a(j) with 0 <= i <= j <= n such that a(i) XOR ... a(j) = a(n) (where XOR denotes the bitwise XOR operator). %C A358918 The sequence has periodic behavior over large intervals (see illustrations in Links section). %C A358918 This sequence is unbounded: %C A358918 - let b(k) = a(0) XOR ... XOR a(k), %C A358918 - if the sequence was bounded with greatest value m, %C A358918 - then the sequence b would be bounded by m*(m+1)/2, %C A358918 - and some value in b, say v, would appear infinitely many times, %C A358918 - so we can find occurrences of v in b at distance m' > m, %C A358918 say b(k) = b(k + m') = v, %C A358918 - so a(k+1) XOR a(k+2) XOR ... XOR a(k+m') = 0, %C A358918 - and a(k+1) XOR a(k+2) XOR ... XOR a(k+m'+1) = a(k+m'+1), %C A358918 and a(k+m'+2) >= m' > m, a contradiction. %H A358918 Rémy Sigrist, <a href="/A358918/b358918.txt">Table of n, a(n) for n = 0..10000</a> %H A358918 Thomas Scheuerle, <a href="/A358918/a358918.png">log_2(abs(first differences of a(0...2000)))</a> %H A358918 Thomas Scheuerle, <a href="/A358918/a358918_1.png">a(0...2000) colored by the sign of the first differences</a> %H A358918 Rémy Sigrist, <a href="/A358918/a358918.txt">C program</a> %H A358918 Rémy Sigrist, <a href="/A358918/a358918_2.png">Scatterplot of the first 1000000 terms</a> (numbers correspond to "local" periods) %e A358918 The first terms, alongside an appropriate pair (i,j), are: %e A358918 n a(n) (i,j) %e A358918 -- ---- ------- %e A358918 0 0 N/A %e A358918 1 1 (0,0) %e A358918 2 2 (0,1) %e A358918 3 1 (2,2) %e A358918 4 2 (0,1) %e A358918 5 4 (0,3) %e A358918 6 6 (0,5) %e A358918 7 2 (4,5) %e A358918 8 7 (0,6) %e A358918 9 9 (0,8) %e A358918 10 1 (9,9) %e A358918 11 6 (2,7) %e A358918 12 7 (2,8) %o A358918 (C) See Links section. %o A358918 (MATLAB)function a = A358918( max_n ) %o A358918 a = 0; xr = 0; %o A358918 for n = 2:max_n %o A358918 r = 0; %o A358918 xr(n) = bitxor(xr(n-1),a(end)); %o A358918 f = find(xr==a(end),1,'last'); %o A358918 if ~isempty(f) %o A358918 r = f-1; %o A358918 end %o A358918 x = xr(2:end); %o A358918 for k = length(a)-1:-1:1 %o A358918 x(1:k) = bitxor(x(1:k),ones(1,k)*a(length(a)-k)); %o A358918 x(1:k) = bitxor(x(1:k),a([1:k]+(length(a)-k))); %o A358918 f = find(x==a(end),1,'last'); %o A358918 if ~isempty(f) %o A358918 if r < f %o A358918 r = f; %o A358918 end %o A358918 end %o A358918 end %o A358918 a(n) = r; %o A358918 end %o A358918 end % _Thomas Scheuerle_, Dec 08 2022 %Y A358918 Cf. A358799, A358919. %K A358918 nonn,base %O A358918 0,3 %A A358918 _Rémy Sigrist_, Dec 06 2022