This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358937 #36 Mar 24 2025 05:54:10 %S A358937 1,1,3,6,13,31,76,192,504,1351,3668,10082,27991,78335,220778,626141, %T A358937 1785593,5117179,14729826,42568767,123465517,359268141,1048541699, %U A358937 3068583485,9002849260,26474484680,78019959584,230381635121,681544367457,2019718168994,5995000501189 %N A358937 Expansion of g.f. A(x) satisfying 1 = Sum_{n=-oo..+oo} x^n * (x^(2*n) - A(x))^n. %C A358937 Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^(2*n+1))^n, which holds formally for all y. %H A358937 Paul D. Hanna, <a href="/A358937/b358937.txt">Table of n, a(n) for n = 0..200</a> %F A358937 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies the following formulas. %F A358937 (1) 1 = Sum_{n=-oo..+oo} x^n * (x^(2*n) - A(x))^n. %F A358937 (2) 1 = Sum_{n=-oo..+oo} x^(n*(2*n-1)) / (1 - x^(2*n)*A(x))^n. %F A358937 (3) 0 = Sum_{n=-oo..+oo} (-1)^n * x^n * (x^(2*n+1) - A(x))^n (trivial). %F A358937 (4) 0 = Sum_{n=-oo..+oo} (-1)^n * x^(2*n*(n-1)) / (1 - x^(2*n)*A(x))^n (trivial). %e A358937 G.f.: A(x) = 1 + x + 3*x^2 + 6*x^3 + 13*x^4 + 31*x^5 + 76*x^6 + 192*x^7 + 504*x^8 + 1351*x^9 + 3668*x^10 + 10082*x^11 + 27991*x^12 + ... %o A358937 (PARI) {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); %o A358937 A[#A] = polcoeff( sum(n=-#A,#A, x^n * (x^(2*n) - Ser(A))^n ), #A) );A[n+1]} %o A358937 for(n=0,30,print1(a(n),", ")) %Y A358937 Cf. A366229, A355865. %K A358937 nonn %O A358937 0,3 %A A358937 _Paul D. Hanna_, Dec 07 2022