A358946 Positive integers that are properly represented by each primitive binary quadratic form of discriminant 28 that is properly equivalent to the principal form [1, 4, -3].
1, 2, 9, 18, 21, 29, 37, 42, 53, 57, 58, 74, 81, 93, 106, 109, 113, 114, 133, 137, 141, 149, 162, 177, 186, 189, 193, 197, 217, 218, 226, 233, 249, 261, 266, 274, 277, 281, 282, 298, 309, 317, 329, 333, 337, 354, 361, 373, 378, 386, 389, 393, 394, 401, 413, 417, 421, 434, 449, 457, 466, 477, 498, 501
Offset: 1
Keywords
Examples
k = 9 = a(3): F = FPell = [1, 0, -7] is properly equivalent to F_p = [1, 4, -3] by two so-called half-reduced right neighbor R(t)-transformations, with the matrix R = R(t) = Matrix([[0, -1], [1, t]]), first with t = 0 then with t = 2. For FPell representing k = 9 with x > 0 and y > 0 see X_1(9, i) = (A307168(i), A307169(i)) and X_2(9, i) = (A307172(i), A307173(i)), for i >= 0. There are also the representations with y -> -y arising from the opposite fundamental solutions. The 2 = A358947(3) rpapfs are F1 = [9, 8, 1] and F2 = [9, 10, 2]. They lead by proper equivalence transformations to a form of the above given principal cycle CyP. F1 -> [1, 4, -3] = F_p with matrix R(6), and F2 -> [2, 2, -3] with R(3). See the FIGURE, p. 10, of the linked paper. Besides the primitive forms FPell, F1, F2 and the four forms of CyP also F' = [-7, 0, 1], and all primitive and properly equivalent forms represent k = 9. See the mentioned FIGURE, where FPa1 = F1, FPa1 = F2, Fpa2' = F_p^{(2)} = [2, 2, -3] and FPa2'' = F_p^{(3)} = [-3, 4, 1].
Comments