cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358952 a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(2*n) * (x^n - 2*A(x))^(3*n+1).

This page as a plain text file.
%I A358952 #9 Dec 08 2022 06:47:54
%S A358952 1,2,18,124,1244,11652,122153,1281722,14009973,154993908,1748602308,
%T A358952 19949674928,230299666100,2682127476280,31492460744869,
%U A358952 372295036400060,4428101312591810,52949362040059258,636176332781478365,7676183282453865394,92978971123440688904
%N A358952 a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(2*n) * (x^n - 2*A(x))^(3*n+1).
%C A358952 Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds formally for all y.
%H A358952 Paul D. Hanna, <a href="/A358952/b358952.txt">Table of n, a(n) for n = 0..200</a>
%F A358952 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
%F A358952 (1) 0 = Sum_{n=-oo..+oo} x^(2*n) * (x^n - 2*A(x))^(3*n+1).
%F A358952 (2) 0 = Sum_{n=-oo..+oo} x^(3*n*(n-1)) / (1 - 2*A(x)*x^n)^(3*n-1).
%F A358952 a(n) ~ c * d^n / n^(3/2), where d = 13.043520100475... and c = 0.432996977380... - _Vaclav Kotesovec_, Dec 08 2022
%e A358952 G.f.: A(x) = 1 + 2*x + 18*x^2 + 124*x^3 + 1244*x^4 + 11652*x^5 + 122153*x^6 + 1281722*x^7 + 14009973*x^8 + 154993908*x^9 + 1748602308*x^10 + ...
%o A358952 (PARI) {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
%o A358952 A[#A] = polcoeff( sum(n=-#A,#A, x^(2*n) * (x^n - 2*Ser(A))^(3*n+1) ), #A-1)/2);A[n+1]}
%o A358952 for(n=0,20,print1(a(n),", "))
%Y A358952 Cf. A355865, A358953, A358954, A358955, A358956, A358957, A358958, A358959.
%K A358952 nonn
%O A358952 0,2
%A A358952 _Paul D. Hanna_, Dec 07 2022