This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358955 #5 Dec 08 2022 07:34:43 %S A358955 1,5,55,715,10285,157577,2521339,41635879,704264465,12139738505, %T A358955 212475103777,3765897874074,67454279084444,1219122315546851, %U A358955 22204489538545069,407150017658467685,7509869807043464691,139245172845883281403,2593887890033997265241,48521833007161546858193 %N A358955 a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(5*n) * (x^n - 2*A(x))^(6*n+1). %C A358955 Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds formally for all y. %F A358955 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies: %F A358955 (1) 0 = Sum_{n=-oo..+oo} x^(5*n) * (x^n - 2*A(x))^(6*n+1). %F A358955 (2) 0 = Sum_{n=-oo..+oo} x^(6*n*(n-1)) / (1 - 2*A(x)*x^n)^(6*n-1). %e A358955 G.f.: A(x) = 1 + 5*x + 55*x^2 + 715*x^3 + 10285*x^4 + 157577*x^5 + 2521339*x^6 + 41635879*x^7 + 704264465*x^8 + 12139738505*x^9 + 212475103777*x^10 + ... %o A358955 (PARI) {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0); %o A358955 A[#A] = polcoeff( sum(n=-#A,#A, x^(5*n) * (x^n - 2*Ser(A))^(6*n+1) ), #A-1)/2);A[n+1]} %o A358955 for(n=0,25,print1(a(n),", ")) %Y A358955 Cf. A355865, A358952, A358953, A358954, A358956, A358957, A358958, A358959. %K A358955 nonn %O A358955 0,2 %A A358955 _Paul D. Hanna_, Dec 07 2022