cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358959 a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(9*n) * (x^n - 2*A(x))^(10*n+1).

This page as a plain text file.
%I A358959 #5 Dec 08 2022 07:35:00
%S A358959 1,9,171,3819,94221,2474541,67842255,1919233719,55608288057,
%T A358959 1641837803793,49218744365683,1494112796918051,45836491198618821,
%U A358959 1418839143493455861,44259772786526485527,1389967891240928450511,43910122539568806384513,1394423517592589134138485
%N A358959 a(n) = coefficient of x^n in A(x) such that: 0 = Sum_{n=-oo..+oo} x^(9*n) * (x^n - 2*A(x))^(10*n+1).
%C A358959 Related identity: 0 = Sum_{n=-oo..+oo} x^n * (y - x^n)^n, which holds formally for all y.
%F A358959 G.f. A(x) = Sum_{n>=0} a(n)*x^n satisfies:
%F A358959 (1) 0 = Sum_{n=-oo..+oo} x^(9*n) * (x^n - 2*A(x))^(10*n+1).
%F A358959 (2) 0 = Sum_{n=-oo..+oo} x^(10*n*(n-1)) / (1 - 2*A(x)*x^n)^(10*n-1).
%e A358959 G.f.: A(x) = 1 + 9*x + 171*x^2 + 3819*x^3 + 94221*x^4 + 2474541*x^5 + 67842255*x^6 + 1919233719*x^7 + 55608288057*x^8 + 1641837803793*x^9 + 49218744365683*x^10 + ...
%o A358959 (PARI) {a(n) = my(A=[1]); for(i=1,n, A=concat(A,0);
%o A358959 A[#A] = polcoeff( sum(n=-#A,#A, x^(9*n) * (x^n - 2*Ser(A))^(10*n+1) ), #A-1)/2);A[n+1]}
%o A358959 for(n=0,25,print1(a(n),", "))
%Y A358959 Cf. A355865, A358952, A358953, A358954, A358955, A358956, A358957, A358958.
%K A358959 nonn
%O A358959 0,2
%A A358959 _Paul D. Hanna_, Dec 07 2022