cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358967 a(n+1) gives the number of occurrences of the smallest digit of a(n) so far, up to and including a(n), with a(0)=0.

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 1, 7, 1, 8, 1, 9, 1, 10, 2, 2, 3, 2, 4, 2, 5, 2, 6, 2, 7, 2, 8, 2, 9, 2, 10, 3, 3, 4, 3, 5, 3, 6, 3, 7, 3, 8, 3, 9, 3, 10, 4, 4, 5, 4, 6, 4, 7, 4, 8, 4, 9, 4, 10, 5, 5, 6, 5, 7, 5, 8, 5, 9, 5, 10, 6, 6, 7, 6, 8, 6, 9, 6, 10, 7, 7, 8, 7, 9, 7, 10, 8, 8, 9, 8, 10, 9, 9, 10, 10, 11, 22, 12, 23, 14
Offset: 0

Views

Author

Bence BernĂ¡th, Dec 08 2022

Keywords

Comments

Up to a(103)=12, the terms are identical to A248034.

Crossrefs

Programs

  • MATLAB
    length_seq=150;
    sequence(1)=0;
    seq_for_digits=(num2str(sequence(1))-'0');
    for i1=1:1:length_seq
         sequence(i1+1)=sum(seq_for_digits==min((num2str(sequence(i1))-'0'))');
         seq_for_digits=[seq_for_digits, num2str(sequence(i1+1))-'0'];
    end
    
  • Python
    sequence=[0]
    length=150
    seq_for_digits=list(map(int, list(str(sequence[0]))))
    for ii in range(length):
       sequence.append(seq_for_digits.count(min(list(map(int,list(str(sequence[-1])))))))
       seq_for_digits.extend(list(map(int, list(str(sequence[-1])))))