cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358975 Numbers that are coprime to their digital sum in base 3 (A053735).

Original entry on oeis.org

1, 3, 5, 7, 9, 11, 13, 17, 19, 23, 27, 29, 31, 37, 41, 43, 47, 49, 51, 53, 55, 59, 61, 67, 69, 71, 73, 79, 81, 83, 85, 89, 91, 97, 101, 103, 107, 109, 113, 119, 121, 123, 125, 127, 129, 131, 137, 139, 141, 143, 147, 149, 151, 153, 155, 157, 159, 161, 163, 167, 169
Offset: 1

Views

Author

Amiram Eldar, Dec 07 2022

Keywords

Comments

Numbers k such that gcd(k, A053735(k)) = 1.
All the terms are odd since if k is even then A053735(k) is even and so gcd(k, A053735(k)) >= 2.
Olivier (1975, 1976) proved that the asymptotic density of this sequence is 4/Pi^2 = 0.40528... (A185199).
The powers of 3 (A000244) are terms. These are also the only ternary Niven numbers (A064150) in this sequence.
Includes all the odd prime numbers (A065091).

Examples

			3 is a term since A053735(3) = 1, and gcd(3, 1) = 1.
		

Crossrefs

Subsequences: A000244, A065091.
Similar sequences: A094387, A339076, A358976, A358977, A358978.

Programs

  • Mathematica
    q[n_] := CoprimeQ[n, Plus @@ IntegerDigits[n, 3]]; Select[Range[200], q]
  • PARI
    is(n) = gcd(n, sumdigits(n, 3)) == 1;