cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358976 Numbers that are coprime to the sum of their factorial base digits (A034968).

This page as a plain text file.
%I A358976 #10 Dec 12 2022 01:34:25
%S A358976 1,2,3,5,6,7,10,11,13,14,15,17,19,21,22,23,24,25,28,29,31,32,33,37,39,
%T A358976 41,43,44,47,49,50,51,53,55,57,58,59,61,62,65,66,67,69,71,73,76,77,79,
%U A358976 83,84,85,87,88,89,92,93,95,97,98,101,102,103,106,107,109,110
%N A358976 Numbers that are coprime to the sum of their factorial base digits (A034968).
%C A358976 Numbers k such that gcd(k, A034968(k)) = 1.
%C A358976 The factorial numbers (A000142) are terms. These are also the only factorial base Niven numbers (A118363) in this sequence.
%C A358976 Includes all the prime numbers.
%C A358976 The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 7, 59, 601, 6064, 60729, 607567, 6083420, 60827602, 607643918, 6079478119, ... . Conjecture: The asymptotic density of this sequence exists and equals 6/Pi^2 = 0.607927... (A059956), the same as the density of A094387.
%H A358976 Amiram Eldar, <a href="/A358976/b358976.txt">Table of n, a(n) for n = 1..10000</a>
%e A358976 3 is a term since A034968(3) = 2, and gcd(3, 2) = 1.
%t A358976 q[n_] := Module[{k = 2, s = 0, m = n, r}, While[m > 0, r=Mod[m,k]; s+=r; m=(m-r)/k; k++]; CoprimeQ[n, s]]; Select[Range[120], q]
%o A358976 (PARI) is(n)={my(k=2, s=0, m=n); while(m>0, s+=m%k; m\=k; k++); gcd(s,n)==1;}
%Y A358976 Cf. A034968, A059956, A118363.
%Y A358976 Subsequences: A000040, A000142.
%Y A358976 Similar sequences: A094387, A339076, A358975, A358977, A358978.
%K A358976 nonn,base
%O A358976 1,2
%A A358976 _Amiram Eldar_, Dec 07 2022