cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A358978 Numbers that are coprime to the number of terms in their Zeckendorf representation (A007895).

This page as a plain text file.
%I A358978 #10 Dec 12 2022 01:33:39
%S A358978 1,2,3,5,7,8,9,11,13,15,17,19,20,21,23,25,28,29,31,32,33,34,35,37,38,
%T A358978 39,40,41,43,44,47,49,50,51,52,53,55,57,59,61,62,63,64,65,67,70,71,73,
%U A358978 75,77,79,83,85,87,88,89,91,95,97,98,100,101,103,104,107,109
%N A358978 Numbers that are coprime to the number of terms in their Zeckendorf representation (A007895).
%C A358978 First differs from A063743 at n = 22.
%C A358978 Numbers k such that gcd(k, A007895(k)) = 1.
%C A358978 The Fibonacci numbers (A000045) are terms. These are also the only Zeckendorf-Niven numbers (A328208) in this sequence.
%C A358978 Includes all the prime numbers.
%C A358978 The numbers of terms not exceeding 10^k, for k = 1, 2, ..., are 7, 61, 614, 6028, 61226, 606367, 6041106, 61235023, 612542436, 6034626175, 60093287082, 609082612171, ... . Conjecture: The asymptotic density of this sequence exists and equals 6/Pi^2 = 0.607927... (A059956), the same as the density of A094387.
%H A358978 Amiram Eldar, <a href="/A358978/b358978.txt">Table of n, a(n) for n = 1..10000</a>
%e A358978 3 is a term since A007895(3) = 1, and gcd(3, 1) = 1.
%t A358978 z[n_] := Length[DeleteCases[NestWhileList[# - Fibonacci[Floor[Log[Sqrt[5]*# + 3/2]/Log[GoldenRatio]]] &, n, # > 1 &], 0]]; Select[Range[120], CoprimeQ[#, z[#]] &] (* after _Alonso del Arte_ at A007895 *)
%o A358978 (PARI) is(n) = if(n<4, 1, my(k=2, m=n, s, t); while(fibonacci(k++)<=m, ); while(k && m, t=fibonacci(k); if(t<=m, m-=t; s++); k--); gcd(n, s)==1); \\ after _Charles R Greathouse IV_ at A007895
%Y A358978 Cf. A007895, A059956, A063743, A328208.
%Y A358978 Subsequences: A000040, A000045.
%Y A358978 Similar sequences: A094387, A339076, A358975, A358976, A358977.
%K A358978 nonn,base
%O A358978 1,2
%A A358978 _Amiram Eldar_, Dec 07 2022