This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A358979 #48 Jan 24 2023 14:19:39 %S A358979 3,19,11,29,131,631,983,353,9941,20089,15031,8387,102931 %N A358979 Least prime p such that p^n + 4 is the product of n distinct primes. %C A358979 Corresponding values of p^n + 4 are 7, 365, 707285, 38579489655, 63121332085847285, 886899938586555644331, 241100240228887100165, ... %C A358979 If they exist, a(14) > 106123, a(15) > 41257, a(16) > 31567. %e A358979 a(1) = 3; 3^1 + 4 = 7. %e A358979 a(2) = 19; 19^2 + 4 = 5 * 73. %e A358979 a(3) = 11; 11^3 + 4 = 3 * 5 * 89. %e A358979 a(4) = 29; 29^4 + 4 = 5 * 17 * 53 * 157. %t A358979 Table[b=4;y[a_]:=FactorInteger[Prime[a]^n+b];k=1;Monitor[Parallelize[While[True,If[And[Length[y[k]]==n,Count[Flatten[y[k]],1]==n],Break[]];k++];k],k]//Prime,{n,1,10}] %o A358979 (PARI) a(n) = forprime(p=2, , my(f=factor(p^n + 4)); if (issquarefree(f) && (omega(f) == n), return(p))); %Y A358979 Cf. A358656, A280005, A000961, A005117. %K A358979 nonn,more %O A358979 1,1 %A A358979 _J.W.L. (Jan) Eerland_, Dec 27 2022