This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359012 #35 Jan 06 2023 20:54:31 %S A359012 318,557,692,729,2226,2437,2776,3209,4436,5336,5549,5718,5956,6068, %T A359012 6141,6353,6958,7045,7046,7338,7345,7643,7865,8261,8409,9153,9178, %U A359012 9242,9544,9569,9664,9894,9999,10174,10889,12389,12434,13497,13516,16308,18695,19707,21940,21954,22535 %N A359012 Numbers k that are a substring of xPy where k=concatenation(x,y) and xPy is the number of permutations A008279(x,y). %C A359012 If n and d are two nonnegative integers, and d <= n, then the number of permutations is obtained by the formula nPd = n!/(n-d)!. %e A359012 318 is present in 31P8 (= 318073392000 = A008279(31, 8)). %e A359012 557 is present in 55P7 (= 1022755734000 = A008279(55, 7)). %e A359012 692 is present in 69P2 (= 4692 = A008279(69, 2)). %o A359012 (Python) %o A359012 import math %o A359012 def is_valid_sequence_number(n): %o A359012 num_str = str(n) %o A359012 length = len(num_str) %o A359012 for count in range(math.ceil(length / 2), length): %o A359012 if num_str in str( %o A359012 math.perm(int(num_str[:count]), int(num_str[-(length - count) :])) %o A359012 ): %o A359012 return True %o A359012 return False %o A359012 A359012 = [] %o A359012 for num in range(10, 10**4): %o A359012 if is_valid_sequence_number(num): %o A359012 A359012.append(num) %o A359012 (PARI) T(n,k) = n!/(n-k)!; \\ A008279 %o A359012 isok(k) = my(d=digits(k), s=Str(k), d1, d2); for (i=1, #d-1, d1=fromdigits(Vec(d, i)); d2=fromdigits(vector(#d-i, k, d[i+k])); if ((d1 >= d2) && (#strsplit(Str(T(d1,d2)), s) > 1), return(1));); \\ _Michel Marcus_, Dec 12 2022 %Y A359012 Cf. A008279. %K A359012 nonn,base %O A359012 1,1 %A A359012 _John Samuel_, Dec 11 2022