This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A359019 #22 Mar 18 2023 11:34:58 %S A359019 1,1,2,3,6,10,21,39,82,163,347,717,1533,3232,6927,14748,31645,67690, %T A359019 145322,311535,668997,1435645,3083301,6619842,14218066,30533005, %U A359019 65580338,140847132,302522253,649759735,1395611508,2997573501,6438470626,13829057884,29703388721,63799607283,137035047576,294336860797,632205714741 %N A359019 Number of inequivalent tilings of a 3 X n rectangle using integer-sided square tiles. %H A359019 John Mason, <a href="/A359019/b359019.txt">Table of n, a(n) for n = 0..1000</a> %H A359019 John Mason, <a href="/A359019/a359019_1.pdf">Counting free tilings of a rectangle</a> %F A359019 For n <= 1, a(n)=1; %F A359019 otherwise for odd n > 1, a(n)=(A002478(n) + A000930(n) + 2 * A002478((n - 1) / 2) + 2 * A002478((n - 3) / 2)) / 4 %F A359019 and for even n, a(n)=(A002478(n) + A000930(n) + 2 * A002478((n - 2) / 2) + 2 * A002478(n / 2)) / 4 %F A359019 Alternatively, from _Walter Trump_: %F A359019 For n <= 1, a(n)=1; %F A359019 otherwise for odd n > 1, a(n)=(A000930(2n) + A000930(n) + 2 * A000930(n - 1) + 2 * A000930(n - 3)) / 4 %F A359019 and for even n, a(n)=(A000930(2n) + 2 * A000930(n - 2) + 3 * A000930(n)) / 4 %e A359019 a(4) is 6 because of: %e A359019 +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ %e A359019 | | | | | | | | | | | | | | | | | | | %e A359019 +-+-+-+ + + + +-+ + +-+ + +-+ +-+-+-+ %e A359019 | | | | | | | | | | | | | | | | | | %e A359019 +-+-+-+ + + +-+-+-+ +-+-+-+ +-+-+-+ + +-+ %e A359019 | | | | | | | | | | | | | | | | | | | %e A359019 +-+-+-+ +-+-+-+ + +-+ +-+ + +-+-+-+ +-+-+-+ %e A359019 | | | | | | | | | | | | | | | | | | | | %e A359019 +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ +-+-+-+ %Y A359019 Column k = 3 of A227690. %Y A359019 Sequences for fixed and free (inequivalent) tilings of m X n rectangles, for 2 <= m <= 10: %Y A359019 Fixed: A000045, A002478, A054856, A054857, A219925, A219926, A219927, A219928, A219929. %Y A359019 Free: A001224, A359019, A359020, A359021, A359022, A359023, A359024, A359025, A359026. %Y A359019 Cf. A000930. %K A359019 nonn %O A359019 0,3 %A A359019 _John Mason_, Dec 12 2022